-A175 245 A _DEDUCTIVE APPROACH TD COMPUTER PROGRANNING(U)
- Z MRNNA 1986

STANFORD UNIV CA DEPT OF COMPUTER SCIENCE
AFOSR-TR-86-2164 AFOSR-81-0014
UNCLASSIFIED

N
T
N

§ [[
HENNENN
T
HEENENN
RN
.
T
L]

I -
I

F/G 9/2

.0 tﬂiém{]?_é

= & I p»

= . . & |
[*9
-

ol 2

rrr
r
fr

I
I

I

N

ez ||l||ég"— X

I

’

$°R0COPY RESOLUTION TEST CHART

e 2 f " TV \q\-
R AR R SRS SIS SRS S AR SR SN SIVEBARA st A |

L ' e et
WS4 ‘
D LN b . |
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)
. " READ INSTRUCTIONS
P T m&w EMR 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
) i; e ® 8 6 - 2 l '4
‘1N 4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
. ' Final Scientific Report
o A DEDUCTIVE APPROACH TO COMPUTER PROGRAMMING | 10/1/84 - 9/30/85
:'; 6. PERFORMING ORG. REPORT NUMBER
[\
*‘i T AUTHOR(s) % CONTRACT OR GRANT NUMBER(s)
b Prof. Zohar Manna AFOSR 81-0014
e
\.‘, 9. PERFOBMING ORGANIZATION NAME AND ADDEESS 10. PROGRAM ELEMENT. PROJECT, TASK
~_j epartment of Computer Science AREA & WORK UNIT NUMBERS
oty Stanford University LD\\OQ\"
W Stanford, CA 94305 D I0OY / A
(10
11. CONTP~ L_ING OFFICE NAME AND ADDRESS ‘-\m 12. REPORT DATE '
o o)) United States Air Force
- Air Force Office of Scientific Research 3. NUMBER OF PAGES
P < Bldg. 410,Bolling Air Force Base, Wash. DC 20332
--"-:, N 14 MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASS. (of this report)
R
N W
[} ‘e
W, Te) m C\ S \ \ unclassified
T S—
l\ 1Sa. DECLASSIFICATION/DOWNGRADING
SCHEDULE
s 16. DISTRIBUTION STATEMENT (of this Report)
= <) "
g - S
WO I d", o rlease s
Q 1strl surliniteg,
L
bl "
7 <
R
':\‘ 17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, i{ different from Report)
AL
D e Cq
ey ! ’ T lir taated
MR : .
‘, .
" 18. SUPPLEMENTARY NOTES
"
::_:: ;,. .
\'--n
b --.‘. i “ - S ‘
i " _“_L,) S0

19. KEY WORDS (Continue on reverae gide if necessary and identily by block number)

AL
: 20. ABSTRACT (Continue on reverae side if neceseary and identify by block number)

N
il
o Lo
.'.-" —

-f)] —

I L ‘
‘\-__

: —

Sy e

A

o DD , 755", 1473 EpiTiON OF 3 NOV 65 15 OBSOLETE

FI S/N 0102 LF 0146601 :

* SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered]

- P J'_\.’..-

- C Haﬁa‘k‘&({\ AN ‘;

g

0
AFOSR.TR."

5 "'TR-'86-21¢64

o

z::’l - A DEDUCTIVE APPROACH TO COMPUTER PROGRAMMING

o
¥,

Jul by
\:; Zohar Manna

a8 Professor of Computer Science
28 Stanford University Stanford, CA 94305

L) . o

,t Final Scientific Report:

il Air Force Office of Scientific Research

ok Grant AFOSR-81-0014 _ .
e Oct. 1, 1984 - Sept. 30, 1985 T 9
. # .4

e -y

&,

N
N Summary

> Our research was concentrated on the following topics:

- o Special Relations in Automated Deduction (Manna and Waldinger [85a][85b])

-‘ Theorem provers have exhibited super-human abilities in limited, obscure subject domains
.\ but seem least competent in areas in which human intuition is best developed. One reason for this
A is that an axiomatic formalization requires us to state explicitly facts that a person dealing in a

familiar subject would consider too obvious to mention; the proof must take each of these facts into

KT account explicitly. A person who is easily able to construct an argument informally may be too

: .Q swamped in detail to understand, let alone produce, the corresponding formal proof. A continuing

:: effort in our research is to make formal theorem proving more closely resemble intuitive reasoning.

'3 One case in point is our treatment of special relations.

i In most proofs of interest for program synthesis, certain mathematical relations, such as equal-
s ity and the orderings, present special difficulties. These relations occur frequently in specifications
- and in derivation proofs. If their properties are represented axiomatically, proofs become lengthy,
::‘ difficult to understand, and even more difficult to produce or discover automatically. Axioms such

N as transitivity have many consequences, most of which are irrelevant to the proof; including them

B produces an explosion in the search space.

~.:: For the equality relation, the approach that was adopted early on is to represent its properties

- with rules of inference rather than axioms. In resolution systems, two rules of inference, paramod-

_.,-:: ulation (Wos and Robinson [69]) and E-resolution (Morris [69]), were introduced. Proofs using

b these rules are shorter and clearer, because one application of a rule can replace the application

of several axioms. More importantly, we may drop the equality axioms from the clause set, thus

‘- eliminating their numerous consequences from the search space.

1 We have discovered two rules of inference that play a role for an arbitrary relation aralogous
: to that played by paramodulation and E-resolution for the equality relation. These rules apply to

L sentences employing a full set of logical connectives; they need not be in the clause form required
o by traditional resolution theorem provers. We intend both these rules to be incorporated into

.'i'f theorem provers for program synthesis.

~

R4 1

o

MERE TN ATNg YWD

LA AAR AL Ch s ta s n ik e oo o bk o A ad e b el a o dad ad e ds gty o]

Employing the new special-relations rules yields the same benefits for an arbitrary relation
as using paramodulation and E-resolution yields for equality: proofs become shorter and more
comprehensible and the search space becomes sparser.

o Binary-Search Algorithms (Manna and Waldinger [85c])

Some of the most efficient numerical algorithms rely on a strategy of binary search; according
to this strategy, the interval in which the desired output is sought is divided roughly in half at
each iteration. This technique is so useful that some authors (e.g., Dershowitz and Manna [77] and
Smith [85]) have proposed that a general binary-search paradigm or schema be built into program
synthesis systems and then specialized as required for particular applications.

It is certainly valuable to store such schemata if they are of general application and difficult to
discover. This approach, however, leaves open the question of how schemata are discovered in the
first place. We have found that the concept of binary search appears quite naturally and easily in
the derivations of some numerical programs. The concept arises as the result of a single resolution
step, between a goal and itself.

The programs we have produced in this way (e.g., real-number quotient and square root,
integer quotient and square root, and array searching) are quite simple and reasonably efficient
but are bizarre in appearance and different from what we would have constructed by informal
means. For example, we have developed the real-number square-root program sqrit(r,£) given
above. This program tests if the error tolerance £ is sufficiently large; if so, 0 is a close enough
approximation. Otherwise, the program finds recursively an approximation within 2€ less than
the exact square root. It then tries to refine this estimate, increasing it by £ if the exact square
root is large enough and leaving it the same otherwise.

This program was surprising to us in that it doubles a number rather than halving it as the
classical binary-search program does. Nevertheless, if the repeated occurrences of the recursive call
sqrt(r,2£) are combined by common-subexpression elimination, this program is as efficient as the
familiar one and somewhat simpler.

e Plan Formation in Situational Logic (Manna and Waldinger [85d])

The deductive-tableau approach applies directly to the synthesis of applicative (or functional)
programs, which alter no data structures and produce no other side effects. To apply the same ap-
proach to nonapplicative programs, which may produce side effects, we have employed a situational
logic. i.e., a system that allows us to refer explicitly to the states of a computation.

The situational logic we have developed (Manna and Waldinger [81]) fits well within the
deductive-tableau framework. We include new functions, such as val(s,e) (the value of expression
e in state 8), s;e (the state produced by evaluating expression e in state s), and new relations,
such as holds(s,p) (true if the value of sentence p is true in state s, and false otherwise). These
are ordinary function and relation symbols; proofs in situational logic may employ the ordinary
deductive-tableau inference rules.

We are currently attempting to apply these techniques to problems in robot planning by
proving theorems in a new formulation of situational logic. Our machine-oriented deductive-tableau
W inference system is adapted to this logic, with special attention being paid to the derivation of
conditionals and recursive plans. With an implementation of the Fay's [79] unification algorithm
(see also Hullot [80]), it has been found possible to build in equations and equivalences of the

% &
I'd AL

ﬂ
v

2

o
&3
A
]
) situ...onal logic. Inductive proofs of theorems for even the simplest planning problems have been
» found to require challenging generalizations.
» q ging g

o Synthesis of Concurrent Programs (Bengt, Manna, Waldinger [86])

The synthesis of concurrent programs is much more complicated than the synthesis of se-
quential programs. In general, a concurrent program does not have a single input value and a
single output value, but receives several inputs and sends several outputs during its execution. If
we consider sequences of input and output values, then we can specify a concurrent program by
giving a relation between the sequence of input values and the sequence of output values. This
specification method is natural especially for networks of deterministic processes that communicate
asynchronously by sending messages over buffered channels (see e.g. [Kahn 74}). Deterministic
data flow networks fall into this category.

We developed a framework for deductive synthesis of such concurrent programs. Since we
wanted to use induction conveniently, we considered only networks that produce finite sequences
of output values when receiving finite sequences of output values.

e Nonclausal Logic Programming (Malachi, Manna and Waldinger [84] [85], Malachi [86])

A deductive-tableau theorem prover can be adapted to serve as the interpreter for a program-
ming language just as resolution theorem provers have been adapted to interpret the language
PROLOG. The programming language TABLOG we obtain in this way combines attractive features
of LIsP and PROLOG:

» It allows the use of equality in programs. (This is allowed in LisP but forbidden in
PROLOG.)

® Programs may define either functions or relations. (LISP programs must repre-
sent relations as truth-valued functions; PROLOG programs must represent n-ary
functions as (n + 1)-ary relations.)

» Pattern matching and backtracking are built in. (They are not part of LIsP.)

In contrast to other languages combining PROLOG and LisP features, such as LoGLIsP (Robinson
and Sibert [82]) and QLOG (Komorowski [79]), TABLOG is a single new language, not a meld of two
separate components.

A sample TABLOG program, to insert a number u in its place in an ordered list of numbers, is
as follows:

insert(u,{]) = [u]
tnsert(u.vozr)=tf u<v
then uo(rozr)
else voinsert(u,r)

Here [] is the empty list, [u] is the singleton list whose sole element is u, and v o z is the result
of inserting (“consing™) the number : at the beginning of the list . We find this program to be
clearer than the corresponding program in either LISP or PROLOG.

s

1 77 7

TR
. s N

o
. B
.

l‘l (] . . .« -

o Logic: The Calculus of Computer Science

The research papers in which we have presented the deductive approach to program synthesis
has been addressed to the customary advanced readership of the scholarly journals. In an effort

v e a
=

3

vl

.4

— . - e e R e e N . N . “ - .

- l I I . - — l - - - » IR S S) . t - !'i‘l. .. \.-
\ e g E \...-,..._.‘-."'.‘-".‘ ._.'. RN oy .q

MJ M ;P« o Wl p_).‘-a‘«n'-.-l‘..uﬂuu'-‘l'.la‘.a..n,.)}.aun_i'.n..n_ R PNP R A By Sl S ¥ S T :‘f_ " Tt wm " n"}nf \w~|n:n"

P R R

s ‘_.l. > &

a
&
a

5
>
¥
&

o
¥

to make this work accessible to a wider audience, including computer science undergraduates and
programmers, we have developed a more elementary treatment in the form of a two-volume book,
The Logical Basis for Computer Programming, Addison-Wesley (Manna and Waldinger [85]).

The book requires no computer programming and no mathematics other than an intuitive
: understanding of sets, relations, functions, and numbers; the level of exposition is elementary.
Nevertheless, the text presents some novel research results, including

s theories of strings, trees, lists, and finite sets and bags, particularly well suited to
theorem-proving and program-synthesis applications;

s formalizations of parsing, infinite sequences, expressions, substitutions, and unifi-
cation;

® a nonclausal version of skolemization;

® a treatment of stepwise induction in the deductive-tableau framework.

7. Publications

Malachi, Y. [86]

Nonclausal logic programming, Ph.D. thesis (supervised by Z. Manna), Computer Science
Department, Stanford University, Stanford, CA, 1986.

{ Malachi, Y., Z. Manna, and R. Waldinger [84]

TABLOG: The deductive-tableau programming language, ACM Symposium on LISP and
Functional Programming, Austin, TX, August 1984, pp. 323-330.

' Malachi, Y., Z. Manna, and R. Waldinger [35]

l TABLOG: Functional and relational programming in one framework, IEEE software, Vol.
2, No. 1 (January 1986), pp. 75-76 (invited abstract).

Manna, Z., and R. Waldinger [80]

A deductive approach to program synthesis, ACM Transactions on Programming Lan-
l guages and Systems, Vol. 2, No. 1, January 1980, pp. 90-121.

]

)

'

Manna, Z., and R. Waldinger [81]

Problematic features of programming languages: a situational-calculus approach, Acta
Informatica, Vol. 16, 1981, pp. 371-426.

Manna, Z., and R. Waldinger ([85a)

Special relations in automated deduction, Journal of the ACM, Vol. 33, No. 1 (Jan. 1986),
pp- 1-60. An abbreviated version appears in the Proceedings of the Twelfth International
Colloquium on Automata. Languages, and Programming (1CALP), Nafplion, Greece, July

{ 1985.

)

: Manna, Z., and R. Waldinger [85b]
!

|

Deduction with relation matching, 5th Conference on Foundations of Software Technology
and Theoretical Computer Science, New Delhi, India (invited paper), Lecture Notes in
Computer Science 206, Springer-Verlag, December 1985, pp. 212-224.

4

RO R R Ca S
L5 "n -{:’; e ;'L-{ - ‘1__5‘ - \ o PR ~ . . ‘.- , T e T e e e
m & Ll .‘nk“n-n- -j_‘n s A 1-2..: Akt LA g Y p o e T T T

Ladialaain® o it dees ae A At dacda- o da-c0h ahd Ath ot e 8 B4 od Al Bl mob ok ad el absesiiek san ary]

"",(
S
o
B
'*'# Manna, Z., and R. Waldinger [85¢]
B ’nz
,-'!"A . The origin of the binary-search paradigm, Ninth International Joint Conference on Arti-
e ficial Intelligence, Los Angeles, CA, August 1985, pp. 222-224. Also to appear in Science
}'_',:- of Computer Programming.
'_','~ Manna, Z., and R. Waldinger [85d]
,",:‘
o Plan formation in situational logic, Workshop on Distributed Artificial Intelligence, Sea
. Ranch, CA, December 1985 (invited paper). ’
-
‘;f:} Manna, Z., and R. Waldinger [85e]
K
E‘:E The Logical Basis for Computer Programming, Addison-Wesley, Reading, MA,
1)
i Volume 1: Deductive Reasoning (1985),
T Volume 2: Deductive Techniques (to appear).
_.-ﬁ:::: Jonsson, B., Z. Manna, and R. Waldinger [86]
"s.'..
;"-,." Towards deductive synthesis of data-flow networks, First Conference on Logic in Com-
puter Science, Cambridge, MA (June 1986).
i ™)
&‘;:
o
-.t'
-- Kl
La0x
A
N
R
[} '1)"'.
-J' R
.
‘ {.Ce
e
o
O]
L ‘,-\
2
\‘_t':
Y
A

)

L4

oo

s

~n‘~\f H
<

“u

1o

- - e v e et ettt e e e e L. P e ..

N T L N
] - CIRA
G, O

ERA P T I . . - .
N R P T S S T T N P el P G N T YOI UL)
e b, W e M U A B o B A Bk Wl O A X o W A om X A m e U B 8 R W % m Ve e W o N

YRR TUw Mo aia Ata et oAl ol *aly el el SaB La8 3ah Sl

June 1984 Report No. STAN-CS-84-1012

AFOSR-TR. 86-2 ;0.4

TABLOG:
The Deductive-Tableau Programming Language

by

Yonathan Malachi, Zohar Manna and Richard Waldinger

Department of Computer Science

Stanford University
Stanford. CA 94305

The three titles should be processed as ‘ /

one report. i
Per Ms. Debbie Tyrell, AFOSR/XOTD

T . TN R NE PRI P T R T P T T A PR m TR T AR TR AR TE N g oy e v e oW IVLNLUNL LWL W T T et

R

A

Wl
9%

0 gat

AN

2o
Ll .

8
S TABLOG:

LA]

" The Deductive-Tableau Programming Language
. 4,
Le?
» '-b

_.:~_a .

g Yonathan Malachy
: Zohar Manna
&3 ' Computer Science. Dep'artment
ot Stanford Universit
- y
v
bl

Richard Waldinger

:::" Artificial Intelligence Center
Aol SRI International
o
SN

"

A

oy Abstract
Ay
v TABLOG (Tableau Logic Programming Language) is a language based on first-order pred-
. icate logic with equality that combines functional and logic programming. TABLOG incor-
o porates advantages of LISP and PROLOG.

L ’:' . . .

[A program in TABLOG is a list of formulas in a first-order logic (including equality.

oty negation, and equivalence) that is more general and more expressive than PROLOG's Horn

R clauses. Whereas PROLOG programs must be relational, TABLOG programs may define
cd either relations or functions. While LISP programs yield results of a computation by

[~ . . .

oo returning a single output value, TABLOG programs can be relations and can produce several

i::} results simultaneously through their arguments.

-

Y ,\“ TABLOG employs the Manna-Waldinger deductive-tableau proof system as an interpreter
in the same way that PROLOG uses a resolution-based proof system. Unification is used
' by TABLOG to match a call with a line in the program and to bind arguments. The basic

h ‘_‘{:—j’. rules of deduction used for computing are nonclausal resolution and rewriting by means of
SA equality and equivalence.

.‘ '.’ . . .

B A pilot interpreter for the language has been implemented.

Sk : : . . .

' This research was supported in part by the National Science Foundation under Grants MOS 82214523,

"J'-:.' M(S-81-11586, and M(CS-81-05565, by the United States Air Force Office of Scientific Research under

X ::ﬂ-_‘, Grant AFOSR-81-0014. by DARPA under Contract NO039-82-C-0250. and by a grant from 1BN Research.

1"*’ San Jose. California.

. Presented at the ACM Symposium on LISP and Functional Programming. University of Texas at Austin,
s August 5 R, 1984,

)

>

e !

e
ol

w e ale

il T T

P Y

1. Introduction

Logic programming [Kowalski 79] attempts to improve programmer productivity by propos-
ing logic, a human-oriented language, as a programming language. PROLOG. the flagship of
logic-programming languages, based on a resolution proof system. has a restricted syntax.
TABLOG is based on a more flexible theorem prover. the deductive-tableau proof system
[Manna and Waldinger 80|, which allows a more intuitive and a richer syntax. A TABLOG
program is a list of assertions in [quantifier-free] first-order logic with equality. The execu-
tion of a program corresponds to the proof of a goal, which produces the desired output(s)
as a side effect.

Since a particular procedure is specified by the programmer. and since the proof taking
place is always a proof of a special case of a theorem-—namely, the case for the given input —
the program interpreter does not need all the deduction rules available in the original
deductive-tableau proof system. The theorem prover can be more directed. efficient. and
predictable than a theorem prover used for program synthesis or for any other general-
purpose deduction.

2. TABLOG Syntax

Syntactic Objects

The language is that of the quantifier-free first-order predicate logic with equality, consist-
ing of the following:

e truth values: true, false.

e connectives: A, V, =, =, — (implies), — (¢f), if-then-else.
e variables such as u, v, ;. ¥ps.

e constants such as a, b, [], 5.

e predicates such as =, prime, €, >.

e functions such as ged, append, +.

The user must declare the variables, constants, functions, and predicates used in the
program: some primitive constants, functions, and predicates (such as 0, []. +, —. >, odd)
are predefined.

Note that we use the if-then-else construct. both as a connective for formulas
if u =] then empty(u) else sorted(u)
and as an operator generating terms

gedir. y) =if r > y then ged(z—y. y)
else ged(z, y—r).

This. together with «— (reverse implication), enables the programmer to write LIsp-style
as well as PROLOG-style programs.

5 M e -~ il - Al tat sl ol e Al A Tl e
v gaas ape foi aac al i Ra - <p avd- e o B N W TN

Programs

A program is a list of assertions (formulas in [quantifier-free] first-order logic with equality).
specifying the algorithm. Variables are implicitly universally quantified.

Here is a very simple program for appending two lists:

append([].v) = v
append(rou,v) = roappend(u,v).

The o symbol denotes the list insertion (cons in LISP) operator, and [] denotes the empty
list (nil in LISP).

A call to a program is a goal to be proved. Like the assertions. goals are formulas
in logic, but variables are implicitly existentially quantified. The bindings of these vari-

ables are recorded throughout the proof and become the outputs of the program upon
termination.

For example. a call to the append program above might be
z = append([1,2,3], [a,b]).
The output of the execution of this program call will be
[1,2,3,a,b],

as expected.

The list construct (e.g. [1,2.3]) is for convenience in expressing input and output, and
denotes the term 10(20(30]])).

3. Examples

The following examples demonstrate the basic features of TABLOG. The correctness of
these programs does not depend on the order of assertions in the program. It is possible,

however. to write programs that do take advantage of the known order of the interpreter’s
goal evaluation. as will be explained later.

In the examples, we use r and y (possibly with subscripts) for variables intended to be
assigned atoms (integers in most of the examples): u and v (possibly with subscripts) are
variables used for lists.

Deleting a List Element

The following program deletes all [top-level] occurrences of an element r from a list:

delete(r.[]) = []
delete(r. you) = (if 7 = y then delete(r. u)
else yodelete(r. u)).

A At A AR AR A ™

This program demonstrates the use of equality. if-then-else. and recursive calls. For those
who prefer the PROLOG style of programming. the last line conld be replaced by assertions:

delete(r. rou) = delete(r. u)
r#y — delete(r. you) = yodelete(r. u)

To remove all occurrences of a from the list [a. b, a.c] the goal
z = delete(a. {a.b.a.c})
is given to the interpreter.

Set Union

The following example, a program to find the union of two sets represented by lists. demon-
strates the use of negation, equivalence and if-then-else:

1. union({},v) = v

to

union{rou,v) = if member(z,v)
then union(u. v)
else (xrounion(u,v))
3. ~member(z,[])

1. member(z, you) = ((r = y) V member(z, u))

Lines 1 and 2 define the union function. Line 1 defines the union of the empty set
with another set, and line 2 asserts that the head r of the first set zou should be inserted
into the union if it is not already in the second set v.

Lines 3 and 4 define the member relation. Line 3 specifies that no element is a member
of the empty set. and line 4 defines how to test recursivelv membership in a nonempty
set.

Factorial

The following program will compute the factorial of a nonnegative integer r:

fact(0) =1
fact(r) = rxfact(r—1) — r>1

The corresponding PROLOG program will be

factp(0.1)
factp(r.z) — ryisr—1 A factp(ry.y) A zis 1=y,

The i8 construct i~ used in PROLOG to force the evaluation of an arithmetic expression.

-,\.- - . N e e -

o S A o T T S A A s N LR N [E S e . .) “ . R .
Y Y S R T R T T T R L S M e seiaCo 2 o ol e o I M B S i i B B Bt & e 3 T M B nn B B Bt P B B S a B B

Quicksort

Here is a TABLOG program that uses quicksort to sort a list of numbers. It combines a
PROLOG-style relational subprogram for partitioning with a LIsP-style functional subpro-
gram for sorting.

L. gsort([]) ="

2. gsort{rou) = append(gsort(u,). roqsort(us))
— partition(r, u, u;. u2)

3. partition(s.[].[;.[])

4. partition{r, you.you,, uy)
— y <r A partition(r,u,u;, uy)

. partition(r.you, u;.yous)
— y>ur A partition(z.u,uy, uy)

0

The assertions in lines 1 and 2 form the sorting subprogram. Line 1 asserts that the
cmpty list i1s already sorted. Line 2 specifies that, to sort a list zou, with head z and tail
u. one should append the sorted version of two sublists of u, v; and w . and insert the
element r between them; the two sublists u; and w are determined by the subprogram
partition to be the elements of u less than or equal to = and greater than z, respectively.

The assertions in lines 3 to 5 specify how to partition a list according to a partition
element r. Line 3 discusses the partitioning of the empty list, while lines 4 and 5 treat the
caze in which the list is of the form yow. Line 4 is for the case in which y, the head of the
l1st. 1= less than or equal to z: therefore, y should be inserted into the list 1 of elements
not ereater than r. Line 5 is for the alternative case.

The append function for appending two lists was defined earlier.

4. Comparison with PROLOG

Functions and Equality

While PROLOG programs must be relations. TABLOG programs can be either relations or
functions. The availability of functions and equality makes it possible to write programs
more naturally. The functional style of programs frees the programmer from the need to
mtroduce many auxiliary variables.

We can compare the PROLOG and TABLOG programs for quicksort. In TABLOG. the
prograni ises the nnary function gsort to produce a value, whereas a PROLOG program is
a binary relation qsortp: the second argument is needed to hold the output.

The second assertion in the TABLOG program is

qsort{ron) = append(qgsort(u;). roqsort(u,)) “
-— partition(r, u ;. 1uy)

. -, - 5 - W e . .. e, e Ty a v T T e e Tl D P Tt ST ST
» i - o » “ « o - ‘. e

The corresponding clause in the PROLOG program will be something like

gsortp(rou,z) — partition(z,u,u;,uz) A
qsortp(ui, 1) A
gsortp(uz, 22) A
appendp(z;,ro229,2).

The additional variables z; and zo are required to store the results of sorting u; and w, .
This demonstrates the advantage of having functions and equality in the language. Note
that. although function symbols exist in PROLOG, they are used only for constructing data
structures (like TABLOG’s primitive functions) and are not reduced.

Negation and Equivalence

In PROLOG, negation is not available directly; it is simulated by finite failure. To prove
not(P). PROLOG attempts to prove P; not(P) succeeds if and only if the proof of P fails.
In TABLOG. negation is treated like any other connective of logic. Therefore. we can prove
formulas such as —member(1, (2, 3]).

The TABLOG union program, described earlier, uses both equivalence and negation:

union([].v) = v
union(rou.v) = if member(z, v)
then union(u,v)
else (rounion(u,v))
~member(z, [])

member(r,you) = (z = y) V member(z, u).

Here is a possible PROLOG implementation of the same algorithm:

unionp(rou.v,z) «— memberp(z,v) A unionp(u,v, z)
unionp(rou,v,z02) — unionp(u, v, 2)

unionp([].v.v)

memberp(z, rou)

memberp(r, you) — memberp(z, u).

Changing the order of the first two clauses in the PROLOG program will result in an
incorrect output: the second clause is correct only for the case in which z is not a member
of ». The TABLOG assertions can be freely rearranged; this suggests that all of them can

i be matched against the current goal in parallel, if desired.
X Unification

The unification procedure built into PROLOG is not really unification (e.g.. as defined
in [Robinson 65]); it does not fail in matching an expression against one of its proper

6

W T

AT T O A T T gs AERER IS LR TR RATS AR RIS,
T e g e e e R R e e e e e o,

L
s _a & _a

<

subexpressions since it lacks an occur-check. When a theorem prover is used as a program
interpreter, the omission of the occur-check makes it possible to generate cvclic expressions
that may not correspond to any concrete objects.

.

The unification used by the TABLOG interpreter does include an occur-check, so that
only theorems can indeed be proved.

N

Y Ty
YL

5. Comparison with LISP

LISk programs are functions, each returning one value; the arguments of a function must j

be bound before the function is called. In TABLOG, on the other hand, programs can be iy

. . . . o,

either relations or functions, and the arguments need not be bound; these arguments will -

later be bound by unification. >

We can illustrate this with the quicksort program again, concentrating on the partition 3

subprogram. In TABLOG, we have seen how to achieve the partition by a predicate with Ry

four arguments, two for input and two for output: e

1. partition(r, [].[].[]) -

.l =

2. partition(r.you,you,uy) ;\-

— y <r A partition(z,u,u;, u;) o

3. partition(r.you.u;.yousy) ph

— y>u1r A partition(z, u,u;.uz) '

The definition of the program partition is much shorter and cleaner than the corre- N

sponding LISP program: -

highpart(r.u) < -

if null{u) then nil e

clse-if r > car(u) then highpart(z,cdr(u)) 5

else cons(car(u). highpart(r, cdr(u))) .

lowpart(r.u) < . .

~)

if null(u) then nil)

else-if r > car(u) ~

then cons(car(u), lowpart(x, cdr(u))) *

else lowpart(r.cdr{u)). ¥

We can generate the two sublists in LISP simultaneously, but this will require even more

pairing and decomposition. "

Note that unification also gives us “free” decomposition of the list argument into its e
head and tail; in the LISP program. this decomposition requires explicit calls to the func-

. ‘w1

tions car and cdr. "

7 o

™

LRI N N

O SN A AR

A:'AI‘/‘"-
sy

]
-
e

i‘ " ll
a =

6. The Deductive-Tableau Proof System

In this section, we give a brief summary of the Manna-Waldinger deductive-tableau proof
svstem [Manna and Waldinger 80 and 82]. This proof system is used as the TABLOG
interpreter. We describe only the deduction rules actually employed in it.

A deductive tableau consists of rows. each containing either an assertion or a goal. The
assertions and goals (both of which we refer to by the generic name entries) are first-order
logic formulas; the theorem is proved by manipulating them. The declarative or logical
meaning of a tableau is that, if every instance of all the assertions is true, then some
instance of at least one of the goals is true. The assertions in the tableau are like clauses
in a standard resolution theorem prover—but they can be arbitrary first-order formulas,
not just disjunctions of literals.

The theorem to be proved is entered as the initial goal. A proof is constructed by adding
new goals to the tableau, using deduction rules, in such a way that the final tableau is
semantically equivalent to the original one. The proof is complete when we have generated
the goal true.

Deduction Rules

The basic rules used for the program execution task are the following:

e Nonclausal Resolution: This generalized resolution rule allows remov@ of a subfor-
mula P from a goal G[P] by means of an appropriate assertion A[P]. Resolving
the goal

Yls

with the assertion

AlP),

provided that P and P are unifiable, i.e., P§ = P@ for some (most-general) unifier
6, we get the new goal

not(A'(false]) A G'[true],

where A'[false] is A8 after all occurrences of Pf have been replaced by false, and
similarly for §'[true]. This deduction rule can be justified by case analysis.

The choice of the unified subformulas is governed by the polarity strategy [Murray
82]. A subformula has positive polarity if it occurs within an even number of
(explicit or implicit) negations, and has negative polarity if it occurs within an
odd number of negations. (An assertion has an implicit negation applied to it.) A
subformula can occur both positively and negatively in a formula. According to
the polarity strategy. the subformula P will be replaced by false only if it occurs
with negative polarity and the subformula @ will be replaced by true only if it
occurs with positive polarity.

e Equality Rule: An asserted [possibly conditional] equality of two terms can be used
to replace one of the terms with the other in a goal. If the asserted equality is
conditional. the conditions are added to the resulting goal as conjuncts.

8

Thus, suppose the assertion is of the form
Als = t],

and the goal 1s
g3,

where s and § are unifiable. i.e.. s6 = 30 for some unifier 8. Then we get the new
goal
not(A'[false}) A G'[t'],

where A'{false] is A after all occurrences of the equality s6 = td (which should
occur with negative polarity) have been replaced by false, and where ¢ [¢'] is G0
after the replacement of all occurrences of the term sf by t6.

The reflexivity axiom for equality x = r is implicitly included among the asser-
tions of every tableau.

e Fquivalence Rule: The replacement of one subformula by another asserted to be
equivalent to it. This is completely analogous to the equality rule except that we
replace atomic formulas rather than terms, using equivalence rather then equality.

s Stimplification: The replacement of a formula by an equivalent but simpler formula.
Both propositicnal and arithmetic simplification are performed automatically by
the TABLOG interpreter.

While nonclausal resolution and the equivalence rule can be performed unifying arbi-
trary subformulas, the TABLOG interpreter applies these deduction rules unifying atomic
subformulas only.

7. Program Semantics

The logical interpretation of a tableau containing a TABLOG program and a call to it is
the logical sentence associated with the tableau: the conjunction of the universal closures
of the assertions implies the existential closure of the goal.

The desired goal is reduced to true by means of the assertions and the deduction rules.
The variables are bound when subexpressions of the goal (or derived subgoals) are unified
with subexpressions of the assertions. The order of the reduction is explained in the next
section. The output of the program is the final binding of the variables of the original goal.

We distinguish between defined functions, whose semantics is defined by the user pro-
gram. and prirmitive functions, which are either data constructors (e.g., o). or are built-in
and have their semantics defined by attached procedures in the simplifier; for example. an
expression like (2 + z + 5)o[] is considered primitive and will be automatically simplified
to (r+7)ol].

As in PROLOG, variables are local to the assertion or goal in which they appear. Re-
naming of variables is done automatically by the interpreter when there is a collision of
names between the goal and assertion involved in a derivation step.

The variables of the original goal are the output variables. The interpreter keeps their
binding throughout the derivation; the same variable name can be used for a different
purpose in other assertions or goals.

9

8. Program Execution

Every line in a program is an assertion in the tableau: a call to the program is a goal in
the same tableau.

The tableau system provides us with deduction rules but with no specific order in
which to apply them. To use it as a programing language. we have to specify the order of
application both for predictability and for efficiency.

The proof system is used to execute programs in a way analogous to the inversion
of a matrix by linear operations on its rows. where we simultaneously apply the same
transformations to the matrix to be inverted and to the identity matrix. In the program
execution process. we start with a tableau containing the assertions of the program and a
goal calling this program; we apply the same substitutions (obtained by unification) to the
current subgoal and to the binding of the output variables. A matrix inversion is complete
when we reduce the original matrix to the identity matrix: in TABLOG we are done when
we have reduced the original goal to true. At this point. the result of the computation is
the final binding of the output variables.

Although in the declarative (logical) semantics of the tableau the order of entries is
immaterial. the procedural interpretation of the tableau as a program takes this order into
account; changing the order of two assertions or changing the order of the conjuncts or
disjuncts in an assertion or a goal may produce different computations.

The user for his part, has to specify an algorithm by employing the predefined order of
evaluation of the tableau. At each step of the execution, one basic expression (a nonvariable
term or an atomic formula) of the current goal is reduced. The expression to be reduced is
selected by scanning the goal from left to right. The first (leftmost) basic expression that
has only primitive arguments (i.e.. that contain only variables. constants, and primitive
functions) is chosen and reduced, if possible. Matching the selected expression against
assertions is done in order of appearance.

This is best explained with an example:

To sort the list [2,1,4.3] using quicksort, we write the goal
z = gsort([2, 1,4, 3]).
To execute this goal, the expression chosen for reduction will be the term qsort({2, 1,4, 3]).
i.e., qsort(20[1,4,3]). This term unifies with the leftmost term gsort(zou) in the second

assertion of the quicksort program,

gsort(rou) = append(qsort(u,), roqsort(uz))
— partition(z, u,u;, uz).

According to the equality rule. it will be replaced by the corresponding instance of the
right-hand side of the equality; this is done only after the unifier

{x — 2, u~—[1.4,3]}

10

is applied to both the goal and the assertion. The occurrence of the equality
gsort(20[1,4, 3]) = append(qgsort(u,), 2o qsort(uy))
is replaced by false in the [modified] assertion, the occurrence of the term
gsort(20(1.4,3])

is replaced by the term
append(qsort(u,),2ogsort(u;))

in the (modified) goal, and a conjunction is formed. obtaining

not(false — partition(2.[1.4.3],u;,u2) A
: = append(qgsort(u,).20qsort(u,)).

This formula can be reduced by the simplifications

(false — P) = not P

and
not(not P) = P

to obtain the new goal

partition(2,{1,4.3]. uy, uz2) A
z = append(gsort(u;), 2oqsort(us)).

Continuing with this example. we now have a case in which the expression to be reduced
is an atomic formula, namely,

partition(2, [1,4, 3], uy, uy).

This atomic formula is unifiable with a subformula in the second assertion of the partition
subprogram (with variables renamed to resolve collisions)

partition{r, you, youy.uy)
— y < r A partition(r,u,us, us).

Nonclansal resolution is now performed to further reduce the current goal. The unifier
{r—2 y—1 u—1[43], uyy — loug, uy — uy}
is applied to both the assertion and the goal; the formula

partition(2, 1,4, 3], lowus., uy)

11

» R T R
P L IR e I

ST .. RO R S _.1
y PV VAT AL WG, ¥y % & LR RN, T SO, USRS

is replaced by false in the [modified] assertion and by true in the goal. Once again a
conjunction is formed and the new goal generated (after simplification) is

partition(2. [4.3]. ug. u4) A

: = append(qgsort(lousz), 2oqsort(uy)).
Eventually we reach the subgoal

z=(1,2.3.4].

where the right-hand side of the equality contains only primitive functions and constants.
The execution then terminates and the desired output is

1.2.3,4).

Note that some functions and predicates (e.g.. o in this example) are predefined to be
primitive: an expression in which such a symbol is the main operator is never selected to
be reduced. although its subexpressions may be reduced.

Backtracking

If the selected expression cannot be reduced. the search for other possible reductions is
done by backtracking.

In PROLOG each goal is a conjunction. so all the conjuncts must be proved: this means
that, when facing a dead end, we have to undo the most recent binding and try other
assertions.

In TABLOG the situation is more complex: each goal (and each assertion) is an arbi-
trary formula. so it is possible to satisfy it without satisfving all its atomic subformulas.
Therefore, when the TABLOG interpreter fails to find an assertion that reduces some basic
expression. it tries to reduce the next expression that can allow the proof to proceed. In
the case in which the expression that cannot be reduced is “essential™ (for example. a con-
junct in a conjunctive goal), no other subexpression will be attempted and backtracking
will occur.

During backtracking, the goal from which the current goal was derived becomes the new
current goal. but the next plausible assertion is used. This is similar to the backtracking
used in PROLOG.

The Implementation

A prototype interpreter for TABLOG is implemented in MACLISP. The implemented system
serves as a program editor, debugger, and interpreter. All the examples mentioned in this
paper have been executed on this interpreter.

The backtracking mechanism provides a simple way of changing the interpreter so
that lazy evaluation can be employed - i.e.. so that attempts can be made to evaluate
expressions even if they have nonprimitive arguments.

Because the interpreter is built on top of a versatile theorem-proving system. the exe-
cution of programs is relatively slow. The interpreter now handies complicated cases that
might arise in a more general theorem-proving task. but will never occur in TABLOG. We
hope that performance will be improved considerably by tuning the simplifier and utilizing
tricks from PROLOG implementations to make the binding of variables faster.

12

9. Related Research

Logic programming has become a fashionable research topic in recent years. Most of the
research relates to PROLOG and its extensions. We mention here some of the work that
has been done independently of TABLOG to generate languages similar to TABLOG in their
intention and capabilities.

While the deductive-tableau theorem prover used for TABLOG execution is based on
a generalized resolution inference rule. [Haridi 81], [Haridi and Sahlin 83], and [Hansson,
Haridi. and Tarnlund 82] describe a programming language based on a natural-deduction
proof system. They do allow quantifiers and other connectives in the language but the
syntax of their assertions is somewhat restricted.

[Kornfeld 83] extends PROLOG to include equality; asserting equality between two ob-
jects in his language causes the system to unify these objects when regular unification fails.
This makes it possible to unify objects that differ syntactically. Kornfeld treats only Horn
clauses and does not introduce any substitution rule either for equality or for equivalence.

[Tamaki 84] extends PROLOG by introducing a reducibility predicate, denoted by o.
This predicate has semantics similar to the way TABLOG uses equality for rewriting terms.
This work also includes f-symbols and d-symbols that are analogous to TABLOG's distinction
between defined and primitive functions. The possible nesting of terms is restricted and
programs must be in Horn clause form.

0oBJ [Goguen, Meseguer, and Plaisted 82] is also related to logic programming. It is
based, however, on the algebraic semantics of abstract data types and equational theory
rather than on {resolution-based) theorem proving in first-order logic. OBJ1 is an advanced
implementation of the language that allows parameterized and hierarchical programming.
OBJ1 includes system features for convenience and efficiency; it uses one-way pattern
matching to apply rewrite rules rather than two-way unification. [Goguen and Meseguer
34] describes EQLOG, the extension of OBJ to include unification and Horn clauses.

There are PROLOG systems, such as LOGLISP [Robinson and Sibert 82] and QLOG
[Komorowski 79 and 82] that are implemented within LISP systems. These systems allow
the user to invoke the PROLOG interpreter from within a LISP program and vice versa. In
TABLOG, however, LIsP-like features and PROLOG-like features coexist peacefully in the
same framework and are processed by the same deductive engine.

10. Conclusions and Discussion

The TABLOG language is a new approach to logic programming: instead of patching up
PROLOG with new constructs to eliminate its shortcomings, we suggest a more powerful
deductive engine.

The combination in TABLOG of unification as a binding mechanism, equality for speci-
fying functions. and first-order logic for specifyving predicates creates a rich language that
is clean from a logical point of view. As a consequence, programs correspond to our intu-
ition and are easier to write. read. and modifv. We can mix LisP-stvle and PROLOG-stvle
programming and use whichever is more convenient for the problem or subproblem.

13

Il"“

L
WX

"‘
.

) -

S

.1_‘1 vt
.l ’

o« a
P
i

P, R W " U . - " A AN v 4 a2 S il MR R *R

By restricting the general-purpose deductive-tableau theorem prover and forcing it to
follow a specific search order, we have made it suitable to serve as a program interpreter;
the specific search order makes it both more predictable and more efficient than attempting
to apply the deduction rules arbitrarily.

While the theorem prover supports reasoning with quantified formulas {Manna and
Waldinger 82; Bronstein 83], the ramifications of including quantifiers in the language
are still under investigation. Quantifiers would certainly enhance the expressive power
of TABLOG. but we believe that they are more suited to a specification language than a
programming language.

It seems very natural to extend TABLOG to parallel computation. The inclusion of real
negation makes it possible to write programs that do not depend on the order of assertions.

The extension of TABLOG to support concurrent programs is being pursued. If the
conditions of the assertions are disjoint, several assertions can be matched against the
current subgoal in parallel. In addition, disjunctive goals can be split between processes.
If there are no common variables, conjuncts can be solved in parallel; otherwise some form
of commumecation is required.

The or-parallelism and and-parallelism suggested for PROLOG are applicable for TAB-
LOG as well. The or-parallelism of PROLOG relates to matching against many assertions:
in TABLOG or-parallelism is possible within every goal, since, for example, goals can be
disjunctive. In TABLOG can other forms of parallelism can be applied to nested function
calls.

Acknowledgments

Thanks are due to Martin Abadi, Yoram Moses, Oren Patashnik, Jon Traugott, and Joe
Weening for comments on various versions of this paper. We are especially indebted to
Bengt Jonsson and Frank Yellin for reading many versions of the manuscript and providing
insightful comments and suggestions.

References

[Broustein 83]
A. Bronstein, “Full quantification and special relations in a first-order logic theorem
prover,” programming project, Computer Science Department, Stanford University,
19%3.

[Clark and Tarnlund 82}
k. L. Clark and S.-A. Tarnlund (editors). Logic Programming, Academic Press (1982).
A P.1.C. Studies in Data Processing No. 16.

[Goguen and Meseguer 84|
J. Goguen and J. Meseguer, “Equality, types, modules and generics for logic pro-
gramming.” in Proceedings of the Second International Logic Programming Conference,
[Uppsala, Sweden. July 2-6, 1984.

14

(Goguen, Meseguer. and Plaisted 82]
J. Goguen. J. Meseguer. and D. Plaisted. “Programming with parameterized abstract
objects in OB in Theory and Practice of Software Technology, edited by D. Ferrari,
M. Bolognani, and J. Goguen, North-Holland, 1982.

[Hansson. Haridi. and Tarnlund 82
A. Hansson. S. Haridi. and S.-A. Tarnlund. “Properties of a Logic Programming Lan-
guage.” in [Clark and Tarnlund 82].

iHaridi 81
S. Haridi. “Logic programming based on a natural deduction system.” Ph.D. Thesis,
Department of Telecommunication Systems and Computer Science, The Royal Institute
of Technology. Stockholm, Sweden. 1981.

\Haridi and Sahlin 83]
S. Haridi and D. Sahlin, “Evaluation of logic programs based on natural deduction,”
Technical report RITA-CS-8305 B. Department of Telecommunication Systems and
Computer Science. The Roval Institute of Technology. Stockholin, Sweden. 1983.

‘Komorowski 791
H. J. Komorowski. “The QLOG Interactive Environment.” Technical Report LITH-
MAR-R-79-19. Informatics Lab, Linkopping University. Sweden. August 1979.

[Komorowski %2
H. J. Komorowski. "QLOG The Programming Environment for Prolog in LISP.” in
(Clark and Tarnlund 32
[Kornfeld 23]
W. hornfeld. “Equality for Prolog.” in Proceedings of the Fighth International Joint
Conference on Artificial Intelligence, Karlsruhe, West Germany, August 1933.
Kowalski 79,
R. Kowalski. Logie for Problemn Solving. North-Holland, 1979.
AManna and Waldinger X0i
Z. Manna and R, Waldinger. *A deductive approach to program synthesis.” ACM

Transactiors on Programmunyg Languages and Systems, Vol. 2, No. L, pp. 92 121. Jan-
uary 19x().

Nanna and Waldinger %2]
7. Manna and R, Waldinger. “Special relations in program-synthetic deduction.” De-
vartment of Computer Science. Technical Report No. STAN-(5-82-902, Stanford Uni-
versitv. To appear 1 Journal of the ACM.

NMurray X2
NV Murray, “Completely nonclausal theorem proving,” Artificial Intelligence. Vol
I Naw Lopp. 67 %5,

Robinson 65]
J. A Robinson. “A machine-oriented logic based on the resolution principle,” Journal
of the ACM Nol. 12, No. 1 Jan 1965, pp. 23 41

N T LT - . - T T

e - P P P L I,
PR R A L I PR PR A e N e e e e T e T T
T T NP I e i S PG G SN S I U SRRV VAL IR DU, S (T PR 8. (U, P, PR P8, 170, P PV, P R S, LWL P, YO0, %,

Sl Ak A

A A s &

A mams

A w o acamm—a A A A A A sAmmm .

.~ hd
.‘l * A" -
A AL A A

- [Robinson and Sibert 82]

b J. A. Robinson and E. E. Sibert, “LOGLISP: and alternative to PROLOG,” in Machine
i Intelligence 10, J. E. Hayes, D. Michie, and Y-H Pao editors, Ellis Horwood Ltd.,
* Chichester, 1982.

; [Tamaki 84]
H. Tamaki, “Semantics of a logic programming language with a reducibility predicate,”
Proceedings of the IEEE Logic Programming Conference, Atlantic City, February 1984. 4

SN
2 T2 -

o o,
A e A

4

oY

ENENE R N

< W " - TN T ENT"EIRT Y

March 1985 Report No. STAN-CS-85-1044

AFOSRvmo 86-2164

The Origin of the Binary-Search Paradigm

by

Zohar Manna
Richard Waidinger

Department of Computer Science
: Stanford University
Stanford, CA 94305
o
i

¥,

.v. >, "\ SRR AP ;.-’_’\ ,'"-"’ﬂ’ B g *', LA _‘ul'.-'-’-)(S “
X :::A?ls’h', '.‘.'u !"u‘. RSN AT "!4 \."' R X, g ."I- \“v '- '- ‘- s “

’

'3

THE ORIGIN OF THE BINARY-SEARCH PARADIGM

ZOHAR MANNA RICHARD WALDINGER
Computer Scicnce Department Artilicial Intelligence Center
Stanford University SRI International

Stantord, CA 94305 Menlo Park, CA 94025

ABSTRACT

In o binary-scarch alzorithin for the computation of a muncerical function, the iterval in winch
the destred ontput is sought s divided in half at cach teration. The paper considers how such
aleorithims wicht be derived from their spectlications by ancastomatie program-synthesis system.
The derivation of the binary-scarch concept has been found 1o be surprisingly straightforward.
The programs obtamed, thoneh reazonably stmple and etficient . ave quute difterent from those that

would hiave been constructed by imformal means.

Key Words: procriun synthesis. theorem proving, binary scarchn real square root

INTRODUCTION

Sote of the most eflictent algorithims for the compntation of mumerical functions rely on the
techmigque of binary search: according to this technigue, the interval i which the desired aatput is
sonht 1= divided i half at cach iteration until it 12 smaller than a given tolerance,

For cxample, let ns consider the following program for finding a veal munber approximation to
the <quare root of a nonnegative real nunber o The program sets 2 to be within a given positive
tolerance o less than /7.

20
e mar{r, 1)
while « < v do v e /2
f (202 <r then 2 2 v v
return(z)

Thi~ 1+ aclassical ~quarerool prosean hased on one that appeared i Wensley 1590 The propgraan
estable-hes and mamtams the Toop mvanant that s withie e less than e be that e helongs
to the hadfopen mterval cxoz o) At each iteration, the prosram divides thisnterval o hadf and
testz whether v the vight o feft bl adynsting 2 and ooaccordimely votil s smadler than
This research wos supported o part by the Nationad Scienee Ponndalion ander grants MOS-
R0 aned MOS<p000050 by Defonse Advanced Rescardh Projects Avency ander Contract
NODGSY S 0-020 1 by the Uinved states e Fovec Oliee of saentihie RBescarch nnder Contract
AFOSR <1000, by the Ot e ol Naval Rescardh vndder Cantract NOGOTE-S L C0706, and hy o

conlract from the Internationas Bremess Moaclone s Corporation.

T TN

* v s - w-w
PR

el AN

D T Y R YT

'.~'-~ IR TR U U L
WO e e e PPN, R
(WIS AWV ST Y YA A A T T R o W AR R R

P —— L g
S R R e Ty y—rerwres ey -.'-.vv!_:‘-—v:'w.‘ I Bk a2 o

the given tolerance ¢ The program is reasonably eflicient; it terminates after Hogs (max(r, 1) /)]
iterations.

Analovous programs provide an efficient means of computing a varicty of numerieal fanctions.
[t is not inmediately obvious how such proerams can be developed by canitomatic prosran-synthests
systetns, wheeh decive prograts to meet given specifications. Sote rescarchiers (e.ar, Dershowitz
and Mana 77 Smithe 85§ have sugeested that synthesis systems be provided with <everal general
prosvaty sehemata, whech conld be specialized as required to it partiondar applications. Binary
<carch would heoone of these schemata, The system would be required to discover which schema,

iy apshicalle to o new 1)1'”{)!(‘111.

It weay ndecd beovatnable o providde a synthesis svstemr with ceneral seliematas b this
approach leves open the question of how sucle sehemata are discovered i the tirst place. To our
surprize. we havve ot the coneept of binary scarch etnerges quite natarally and casily in
the slerivations of ~ome mapertoal progeaans and does not need to be built in. The programs we
have obton o d o this way e voasonably sumple and efficient, but bizaree in appearance and guite
ditforent oo rnese o we world ave constrieted by inforand means.

The poorrans have been derved e acdeductive franework (Manna and Waldmger [80], [85])
wnowhich ol provess of constenctines o prorram 1= regarded as a task of proving aomathematical
theorem Accordig to tlus approach. the provram’s specification is phrased as o theorem, the
theorem s proc b and o proveane enerantecd 1o meet the specitication s oxtracted from the

sreob B e spoahicanion vetloets o antentions correctly. no [rther verthication or testing is
I !) g

l'(‘(lllll‘1"1

foorhes pogree we onmthine one dedactive froomework el shiow the dderivation of o namerical
froe

proscam up to tiee pomtoar which the binary-scarch concept cmerses. We then shiow several

ateadocons oooyescarch proeeanns that have been developed by this method Finally we discnss

what the~c o tehieate abont the prospects for antomatic progrian synthesis,

DEDUCTIVE PROGRAM SYNTIHESIS

In this =ection we deseribe our fraanework for dednetive program svathesis, ciaphasizinge those
aspects that are esseudal fov the derivahon fraoment that appears i this paper. Readers who
wonld Tike o Gdlber introduction 1o this approach are referred to Maona and Waldinger (18307 [851),

We bedine with an ontline of the logical concepts we shall need.

LOGICAU PREREQUISITIES

The syztem deals with

o terms commposed i the nsual way' ol constants . hoeo 0 vamables woeow,

frinction sy mbols, and the conditionad (of-then-elae) term constructor.

o aloms cotuposed of termss relation (predicare} yvmbols. mclidue the cquality

syinbol aned the tet e <ynbiols Groe aand false,

A
.- - C .

" e
W e g

A~

o |

gy
< .‘f’

’l
PP i

5%
;'r L4

>

i) Ry
FVARRE MR

.«
>

v l‘
»

~
~
\D
hd
L4
"
. o
]

e sentences composed of atoms and logical connectives.

Sentences are quantifier-free. We sometimes use infix notation for function and relation sym-
bols (for example, £+ a or 0 < y). An erpression is a term or a sentence. An expression is said
to be ground if it contains no variables. Certain of the symbols are declared to be prinative: these
are the computable symbols of our programming language.

Let €, s. and ¢ be expressions, where s and ¢ are either both sentences or both terms, If we
write e as efs], then eft] denotes the result of replacing every ocenrrence of s inefs| with ¢

We loosely follow the terminology of Robiuson [79]. We denote a substitution 0 by {u; «
tiotg —to. .o x, =t} Tor any expression e, the expression o is the vesalt of applying 0 1o ¢,
obtained by simultancously replacing every oceurrvence of the variable £, in e with the corresponding
terin ¢t,. We shall also say that ¢0 1s an instance of e.

Variables in sentences are given an implicit universal quantification: a sentence is true under
a given interpretation if and only if every instance of the sentence is true, and if and only il every
ground instance of the sentence (e an instance that contains no variables) is true.

Let ¢, s, and ¢ be expressions, where s and ¢ are cither both sentences or both terms, and let
0 be a substitution. If we write ¢ as ¢fs], then ¢f[t] denotes the result of replacing every occurrence
of s in 0 with ¢.

We now describe the basic notions of dednetive program synthesis.

SPECIFICATIONS AND PROGRAMS

A specification is a statement of the purpose of the desived program. which need give no
indication of the method by which that purpese is to be achieved. o this paper we consider
ouly applicative (or functional) prograius, which yield an output but alter no data steuctures and
produce no other side effects. The specifications for these programs have the form

fla) < find 2 such that Rla, 2
where Plal.

In other words, the program [we waut to constract is to yield, for a given input a, an output 2
satislying the output condition Rfa, z], provided that the inpnt a satisfies the imput condition Plal.
In other words, 2 is to satisfy the mput-outpul condition

if Pla|
then R[u, ::].

For example, suppose we wanl to speeify the program sgrt 4o yield a real anmber & that is
within a given tolerance ¢ less than /r, the exact square root of a given nonnegative real noiber
r. Then we might write

sqgre(r, ¢} <« find 2 such that
22 < r and not [(* + ()2 < r]

where 0 < v oand) < «.

L~ D T N P S
. c . . R

P S N R U T T R R Y VR R P T W A e

an %

a X _ .

L
o
3
1Sl
9% 4
Y
A0
o [n other words, we want to Hnd an output z satisfying the output condition
!‘.‘l
° 22 <r and not [(z+¢)? <],
Y _
o provided that the inputs r and ¢ satisfy the inpat condition)
o
- 0<r and 0 <c
q .L"
The above square-root specification is not a program and does not indicate a particular method
i for computing the square root; it deseribes the input-output behavior of many programs, cploying
" ditterent algorithms and perhaps producing dilferent ontputs.
.“:\ , . . .
The progriuus we coustder are sets of expressions of the formn
-
Li{a) <= ¢,
-'..
A whore f, is a primitive term, Le., one expressed entirely in the vocabulary of our programming
langnage. These programs can be nmtually recursive; e, we regard the function symbols f; as
- primitive. In the nsual way. such a program indicates a method for computing an output. For the
o wost part. in this paper we shall consider programs consisting of only a single expression f{a) <= ¢,
which may be recursive.
s
IO In a given theory, a program [is said to satisfy a specification of the above form if, for any
D mpit a sati=lying the input condition Pla]. the program f(a) terminates and produces an output
I t <atisfying the ontput condition Ria, ¢].
.’A
.' Pl

DEDUCTIVE TABLEAUS

;._ The fundamental struchiree of our system, the dednetive tableau, is a set of rows, cach of which
st conlain a sentence, either an assertzon or a goal; any of these rows may contain an expression,
=L the ontput entry. An example of a tablean follows:
_\’;-] - oulputs— 7
assertions goals
& [(a)
.3
". /DIﬂ]
e - .ﬁ
o Rla, 2| z
. - . ——— — —
N f q(u)
C
T L then ,Q[u., ()]
q(a) 0
-t

Here v and 2 are vartables and a and 0 are constants.

Under acgiven interpretation, a tablean is true whenever the following condition holds:

I all instances of cacli of the assertions are true,

then ~otne m=tance of at least one of the goals is true,

o
'
pa] 5
.
i5Y .
)3 Equivalently, the tablean is true if some instance of at least one of the assertions is false or some
:‘: X instance of at least one of the goals is true. Thus, the above tableau is true if Pla) is false, if
4l
o
o if q(b)
QY then Rb, 0]
1
)
O is false, if Rla. ¢} is trae, or if ¢(a) is true (among other possibilities).
.
In a given theory, a tableau is said to be velid if it is troe under any model for the theory.
2
B Under a given interpretation and for a given specification
N
3
[\:.
o2 fle) < find z such that Rfa, 2|
0]
L where Plal,
J‘: a goal is said to have a sustable output eatry if, whenever an instance of the goal is true, the
4.-':: corresponding instauce £ of the output entry will satisfy the tnput-output condition
e
o
LY .
B’ if Plal
; then R[a, t'].
o (If the goal has no explicit output entry, then it is said to have a suitable outpat entry if. whenever
- an instance of the goal is true, any term £ satisfies the tuput-output condition.) An assertion is said
N to have a suitable output entry if, whenever an instance of the assertion is false, the corresponding
1) instance ¢ of the output entry will satisfy the input-output condition.
TN Example
-
- In the theory of the real numbers, cousider the square-reot specilication
, sqrt(r,) <= find z such that
e 22 <r oand not [(z +¢)? <7
~ where 0 €7 and 0 < ¢
Y
-
» and the following tableau:
& hl
. ontputs
assertions goals
qri(r. o)
1. 0<r and
0 <«
2 22 <r and
. ; z
not [(z +)* < r]
3. mot[? <7l 0
This tableaw is vadid in the theory of real numbers, beeansze, under any model of the theory,
cither the assertion (which has no vartables) 15 false or some nstance of one of the two poals i3
trac. (In particular, the iustance of goal 2 obtamed by taking = to be /7 itsell is true.)

6

Under any model for the theory, the output entries of the above tableau are suitable for the
square-root specification. In particular, if some instance of goal 2, obtained by replacing 2 with s,
is true, then s will satisfy the input-output condition. That is,

if 0<r and 0<¢
then s2 <r and not[(x+)2 <r]

15 true. Also, if assertion 1, which has no output entry, is false, then any term s satisfies the above

condition.
-l

Under a siven inlerpretation I and for a given specification, two tableans 7y and Ty have the
o o 1 3 2

same meaning if

Ty is true under J
if and ounly if

is true under [

-

‘2

and

the ontput entries of Ty are suitable
if and only if
the output entries of Ty are suitable.

In a given theory and for a given specitication, two tableans are equivalent if, under any model T
for the theory, the meaning of the two tableaus 1s the same.

PROPERTIES OF A TABLEAU

Let us constder a partienlar theory and a particnlar specification, which will both remain fixed
throughout this discussion. We shall use the following properlies ol a tableau:

e Duality Property

Any tablean is equivalent to the one obtained by removing an assertion and adding its negation
ax a new poal, with the same outpmt entry. Similarly. any tablean is cquivalent to the one obtained
by removing a goal and adding its negation as a new assertion. Thus, we conld manage with a
system that has no groals or a system that has no assertions, but the distinetion between assertions
and poals does have some inhiitive signilicance.

o [tenaming Property

Any tablean is equivalent to the one obtained by systematically ceunaming the variables of any
row. More precisely, we miay replace any of the variables of the row with new variables, making
sure that all occurrences of the same variable in the row (including those in the ontput entry)
are replaced by the same variable and that distinet vaciables in the row are veplaced by distinet
variables. I other words, the variables of & row are dummies that may be renarued freely.

N et e
T - "~ N

SO SN NP P N R S n',.'j'_;:q‘-‘_,::; .

P S
A N PR T N N
v} ?‘.A;u- e N “_ 'Li'}'ﬂ.'i::u'

Bl
.

PP

o Instance Property

Any tableau is cquivalent to the one obtained by introducing as a new row any instance of
an cxisting row. The new row is obtained by replacing all ocenrrences of certain variables in the
existing row (inclading those in the output entry) with terms. Note that the existing row is not
replaced; the new one is simply added.

THE DEDUCTIVIE PROCESS

Consider a particular theory and the specification

S{a) < find z such that Rla, 2|
where Plal.

We form the initial tableau

oufbputs
f(«)

assertions goals

Pla]

R(a, 2] z

We may also include in the initial tableau (as an assertion) any valid sentence of the theory.

Note that the ontput entries of this tablean are suitable: Under any modd for the theory, if the
initial assertion Pla] is false, then any output satislies the input-output condition vacuously: and
if some iustance Rla,] of the initial goal is true, the corresponding instance ¢ of the associated
output cotry satisfies the input-output condition. Furthermore, the valid sentences ineluded as
initial assertions caunot be false.

We altempt to show that the above tablean is valid. We proceed by applying deduction rules
that add new rows without changing the tablean's meaning in any model for the theory, In other
words, nnder a given model the tablean is true before application of the rule iCand only if it is true
afterwards, and the ontput entries are suitable before if and ounly if they are suitable afterwards.
We deseribe the deduction rules in the next section.

The deductive process continites until we obtain either of the two rows

[L true) ¢

T R

where the output entry ¢ s primitive, e, expressed catirely in the vocabulary of our progranmining
langnage. (We regard the input constant a aud the function symbol [as primitive.) At this point,
we derive the program

or

‘ Jalse

fla) <= ¢

A 2 32 =2 & 32 ses

8

&N
R

We claim that ¢ satisfies the given specitication. For, in applying the deduction rules, we have
! gnaranteed that the new output entries are suitable if the carlier output entries are suitable. We
have scen that the initial output entries are all suitables therefore, the Aual ontput entry ¢ is also

. suitable. This means that, under any wodel, if the tinal goal true is true or the final assertion fulse
- is false, the corresponding output entry ¢t will satisfy the input-output condition

v if Pla

then Rla, th.

‘A
e A

j*. Bt under any model the truth symbols true and fulse are true and false. respectively, and henee
Ny towall sarsty the mput-ontput condition. Theretore, the program f(a) <= ¢ does satisty the speai-
N L

- heation.

.(\ { ¢

D
- THE DEDUCTION RULES
o
X, We now introdnce the deduction rules of onr system, empliasizing those that play a role in the

portions of the sqnare-roat derivation we present. We Login waith the simplest of the rules.

b '.}

- THE TRANSFORMATION RULES
'

The transformation rules replace subexpressions of an asscrtion voal or ontpat cutry with

- cqual or cquavadent expressions. For mstance, with the transtorinatyon roide
- 2 and true - P,
1-‘.1

, we can replace the subsentence ((A or BY and true) with (A or 1) aothe asscrtion
o e | |
e | ((\ or 1) and [ru:') or D , 1) j
7 A R l !
-‘-'n

Y yiclding
:~:.: L(A or I3) and D]: \)] ‘
- . . S I _ . . o
.N.
" With the transformation rade (in the theory of integers or reals)

Rl

uwtu »2u,

we can replace avsabterin (a+h) + (a4 b) with the term 2(a + 1),

We nse an associalire-commutatiee matching algovithne (of - Stckel [810), =0 that the associa-
tive and conpmutative properties of operators can he taken into acconnt m applying the transfor-
mation rades Thus we caae aae the wdiove tales to replace aosibaentenee (rae and 1) with the

sentenee Ioand the sabterm (o b) o bowaith the term a o+ 20,

R AL P
Y : SRR Y

A A ek

NI N RN

s J v vom e N
atad r..! ., P PP

P3
PR I Y B 4

[
3 I'AX

[A Ay

We include a complete set of true-false transformation rules, such as

not false — true

if P then fulse — not P,

Repeated application of these rules can elimivate from a tablean row any ocenrrence of the truth
symbols true and fulse as a proper subsentence.

The zoundness of the transformation rules is evident. sinee each produces an expression equiv-
alent or equal {in the theory) to the one to which it 1= applicd.

THE RESOLUTION RULE: GROUND VERSION

The resolution rule corresponds to case aualysis in informal reasoning. We first present the
ground cerston of the rule, which applies to ground goals. We express it in the followiugz notation:

e y T Toutpitts
j as=ertions 1(;‘();\ N /(”)
| 1P .
}, —_——— JE—
g1P] t
‘[T - T T T I I T T L ooy T T — - T LT T T T o T T T T A _— _;___Q
! Fltrue] i p
| and then s
! Gl fulse] else t
I . L . .

I other words, suppose onr tablean contains two ground goals, F and G, whose ontput entries
arc ~ and fLorespectively, Suppose further thit ¥ and & have a common subsentence 2. Then
we iy derve and add to onr tablean the new goal obtidned hy replacing all ocenrrences of P oin
Fowith true veplacing all occnrrences of P G with fulse, and forming the conjunction of the
results. The ontput entry associaded with the derived goal = the conditional expression whose test
1> the cotnton snbexpression P and whose fhen-clanse and else-clanse are the output enlries s and
tfor Fand Jorespectively, Becanse the resolution rale always inlroduces ocenreences of the truth
syinbols frue aind fulse as proper subsentences, we can inmediately apply frue-false transformation
miles to the derived goal.

For example, suppose onr tablean contain- the rows

\ ’ ’ |) | onlpals 11
assertions ! roals [, b)
o . ‘ i
! boplahy D and gla) « l
| I)
R e T 7 R - - T - —— s ey
. j not (if r(b) tien ‘[]z(u, h) ;) N J!

These vonds hive acconmmon <abeentence plos Ao dieated by hoves Therefore we may derive and
add to o tablean thie new roal

R T P PPy ""'"""'mmmm
s Y 2y

10
true and q(a) ‘ if pla, b)
and then a
not (if r(h) then false) else b

By repeated application of transformation rules, this goal reduces to

" X o D rsen
|
.

i
| qla) and r{h) then a
\ else b

|
|

.-

If one of the givenr soals has no output eutry, the derived output entry iz not a conditional
expression: ttis simply the output entry of the othier given goal. If neither given goal has an outpit
entry, the denived goal has no ontput entey cither. We do not requure that the two given goals bhe
distinet: we may apply the rule to o goal and itself.

We have presented the resolution rude as it applics to two goals. According to the duality
property of tableans, however. we may transform an assertion into a goal simiply by negating it
Thercfore, we can apply the rule to an assertion and a goal. or to two assertions.

The resolution rale ay be restricted by a polarity strategy (Murray (82]; see also Manna and
Waldinger (80). according to which we need not apply the mle unless xome ocenrrence of P oin
F s tposttive” and sowe ocenrrence of 2 in & i tnegative” . (Here asubsentenee of a tablean s
regarded as positive or negative a1t s within the cope of a vespectively even or odd munber of
negation connectives. Bach assertion 1= considered to bhe within the scope of an implicit negation;
thus, while voals are positive, assertions are negative The f-clanse 2 ot asubsentence (if 2 then Q)
1= constdered to he within the scope of an additional uplicit negation.) This strategy allows us to

dizregard wany useless applications of the rle.

Lot us show that the resolution rale s sorndd: that is,ina given model of the theery and for a
siven specthication the meaane of the tablean i the <aue before and alter appheation of the rale.
It actualty sullices to <how that i the derived goal 1= true, then al least one of the given goals is

true, and it the wiven ont put entries are siitable, so is the derived outpat cntry.

Suppose the derved woal (Ftrwe, and G ifalsel) = trae, Then both its conjuncts Tltrue] and
Cifulser are troes We diztingnish between two cazes, depending on whether or not the common
subsentence 2 s true or falses o the case i which 2 is tene, the Toromud] goal 7121 has the same
-
o

trnth-value as the conpnnet Titrwes that ass FIP i trae In the case i which is Iadse, the goal
J .] A

27 has the same teath-vadne as the congunet gy falscthad ise @7 s traes T either case, one
of the two ven poals, 020 and G170 is trae,
r
e Now assnpe that the ven output entries are suitable. To show that the denved outpat entry
" :: wosnitable, we suppose that the devived goal is trae aad establish that the derved ontput entry
- satitios the wput-ontpat coudition. We have seen that, in the case e wineh P s troe, the given

goal T 20 traes becanse s ontpnt cutry s is suitables it satisties the input-oulpit condition.

ll'

Sinalarly. in the case o which 7 1s fadsel the termn #fosatislies the inpat-ontput condition. In either
case, therefore the conditional expresaon {off B othen < else £) satisfies the inpuat-out put condition;

L
’

L A

RS

bt this is the derved output entry.

LA
IRWWh RN

1‘\:;\-: N e e T N e : S
e T e AN o TN T e g T
&__\' SR T N O R R B TR AR

i1

TIE RESOLUTION RULE: GENERAL VERSION

We have deseribed the sronnd version of the resolution rule, which applies to goals with no
variables. We now present the general version, which applies to goals with variables. In this case,
we can apply a substitution to the goals, as necessary, to create a common subsentence.

[N ols onfpufs 1
assertions goats I(a)
F(P] $
s12l t
S— g — — - 47_?: P oy = - - T DT T -3
7()[lrue] 2] Fo
and then sU
{ G0 fulse] else t0 |

Morce precisely. suppose our tablean contains goals 7 and . which have no variables in coumon.
(This can be ensured by renaming the variables of the rows as necessary, according to the renaming
property) Suppose farther that some of the subsentences of 7 and some of the subsentences of §
arc unitiable, with a most-geueral wnifier 9; et 20 be the unilied subsceutence. Then we may derive
aud add to onr tablean the new goal obtained by replacing all occurrences of P in F0 with true,
replacing all occurrences of 20 in G0 with false, and forming the conjunction of the results. The
assoctated ontput entry s a conditional expression whose test is the nnibied subsentence £0 and
whose then-clanse and else-clause are the corresponding iustances s0 and 18, respecetively, of the
given out pat entries.

G. we apply the ground
version of the rule to 50 and G0, The sonndness of the general version follows from the sonnduess
of the gronnd version. The polarity strategy applies as helore. If we wish to apply the rale to an
assertion and a goal or to two assertions, we can regard the assertions as goals by negating them,

In other words, to apply the general version of the rule to F and §

as in the sronnd case,

For example, supposc our tablean contains the rows

[) outputs
assertions goals f{a, b)

i

y<a and
not{y +b<al
()

and g(u)

S alr v)
ey < oroand
not ‘f(.l npoto 7 jf‘

then

The boxed subsentences are unifiable; a most-general nnifier ig

0 {ee-a, ve by fa, b)}.

A £ 4 4.

A & A
Py

Iy

A_M A

Ml ool ada " =i e it it ol el Sab fak ok fad Sob Bat faf B8 Yl dafitann MAIA RS gl g Lt g

LAl AL ekt ot M A Atk el e irh et n 2 o s el ad A Aa on) |

The subsentences are respectively positive and negative, as indicated by the annotation. We may
recard the assertion as a goal by negating it. By application of the peneral version of the resolntion
rule, we may derive the new row

1 true and
‘ p(f(a, b))

1 and U(f(’l~ b))
; i ala.)
l

not
then [alse

By the appheation of frae-false transformation rules, this goal reduces to

— 7 1
! L op(fla b))
; and g(f(a. b))

q(a, b)

| _

Note that the nnitier ¢ has been applicd to all variables in the given rows, including those in the
outpnt entry. Because the given assertion has no output entry. the derived ontput entry 1s not a
conditional expression. This application of the rule is in accordance with the polarity strategy.

The resohution rule and the true-fulse transformation mles have been shown by Murray {82] to
constitute a complete system for first-order logic. The polarity strategy maintains this complete-

eSS,

We nse an associative-comumutative unilication algorithm (as in Stickel [81]) so that the as-
sociative aund commtative properties of such operators as addition and conjunction can be taken
into account in finding a unitier: thus, p(f£(2) + (b +0(a))) can be nnitied with p((a(y) + J(D) +x).

We have introduced two additional rules to give special treatinent to equality and other -
portant relations (Manna and Waldinger [85]), but these rules play no part in the portion of the
derivation to be discussed.

We shall need the jnduction rule; this we deseribe next.

THE MATHEMATICAL INDUCTION RULE

The vules presented so far do not allow us to introduce any repelitive construct into the
proveaan being derived. The induction rale acconnt= for the introduction of reenvsion in the derived

proceant. We employ asingle well-fonuded induetion rules which apphes to a vaciety ol theovies.

A well-founded relation <, 1% one that adinits no infinite decreasing sequences, Lo SCquences
ry. g 1. ... such that

Ty o £q wnd £y >, x3 and. ...

Por 1-tanee, the less-than relation < is well-fonnded in the theory of nonnegative itegers, but
not i the thoory of real numbers,

e - PR PR ¥ . -
PRI N RV PV W N P PR

" L ML AT S NS S]

R

B
< ..'\ s
el Nl el Lol

. . - w
. ~
-

DU SR . I S Y S T)

- - - " 4.
TR W DT I I

TSl SRR

2 &

OlL:A_,

R & 4

L)

SN AT
NS AT

3 S

13

The version of the well-founded induction rale we need for the derivation is expressed as tollows
(the yeneral version is wore complex):

Suppose our nitial tableau is

! ‘ outputs
! assertions goals f(a)

2l

|

Rla, 2| 2

In other words, we are attempling to construcl a program [that, for an acbitrary input o, yiclds
an ontput z satistying the mput-ontput condition
if Plal
then R[u, z].
According to the well-founded induction rule. we may prove this assuming as our induction hy-
pothesis that the program [will yield an output f(e) satisfying the same input-output condition
if Flr]
then R [I, f(:c)],

provided that ris less than a with respect to some well-founded relation <, that is, © <y, a. In
other words, we may add to onr tablean the new asscertion

\(if £<,0a
L then if Pl
then R [;r,, f(z)]

The well-founded celation <, nsed in the induction rule is arbitrary and must be selected later in
the proof.

For exaniple, constder the initial tablean obtained from the squarce-rool specilication:

oulpuls

assertions goals sqri(r, o)

0<r and) <«

22 <r and
not [(z + ()2 < r]

By application of the well-fonnded induction rule, we may introduace as a new assertion the induae-
tion hypothesis

f {rov) <, {roe)
;o then f O < oand O < v

12
<r

1
I <
i =

[xq‘rl(J:, ‘U)
| (

et (\(sqrf son) 1)]2 <)

and

then

- L — — —

AT
-

Ty :
TN ARG P Y

Ealk tad i Malt Aad Mol sk ok tad ool £k anh £ L0 48 L0 4l ias g ay]

| A kb i i Al el Slhe i St A e Adie-Ahe At A 1 il el AR an e b o h b R osk ek ek ek Gad 4
-

14

In other words, we may assume inductively that the ontput of the square-root prosram we constrnet
will satisfy the input-output condition for inputs o+ and v that are less than the given wpnuts 7 and
« with respect to some well-founded relation <,

Use of the mduction hvpothesis i the proof may acconnt for the introduction of a recursive
call into the derived prosvam. For example. suppose that in the square-root derivation we manage
to develop a goal of form |

-~
i ——
s

¢

4.

h(‘ tH‘.\'(“l <1thise Nnteto e~ Ht‘ flll* f.'«m.l ;LH(‘. the im]ll& tion h\")u!lu'.~i.~’ alo llili“.’tl»l(‘. Q :n()hf-”('ll(‘rdl
> ot o
1\1111"1(‘1' 1=

1) (I O LI B .~‘r[!‘f[.~'\ (\)}

Theretore we o apply the cosobtion ride to obtain the new goal

i 3
oo truey —}

and
rzf SRR ¢ S t[.w/r/(s, b)]

rat Hhen of U5 s and Qoo
then false

This ool v dnees under transformation to

- -)]) e . |
i‘ b true

‘ and oy Y

: l (\"\'~ A) \’ul <r, (> fl”ll t[.\qu(‘q' ‘S)]

| [0< s und 0 <o

R S ORI .

Note that arecnrsive call sgre{s. 6) has been introduced mto the ontput entry as a result of
this step. The conditton (0 < & ard 0 <28} in the yoal ensiees the legality of the argmments s and
Sobes that they satisfy the mpnat condition of the desired program. The coudition (s, 8) <, (r, ¢)
ensures tod the evalnation of the reenrsive call cannot lead to a nonterminating computation. (If
there were an idinte cotmputation, we conld constract a correspondineg infinite sequence of pairs
of argntents decreasingg with respect too <0 thos cordradicting the delintion of o well-fonnded
relation)

The pactiendar well tonnded rebdone < relerred toin the induction hypothesis is not yet
specilicd. s sclected o Lator stawe of the prool T we allow well-Toundaed relitions to be objects
i onr donnan o we s rerard the sentence o<y as an abbreviation for <(w, x, y); thus, w
i a vartable thot gy b esaaetiated to e paraentar relation. We assiane that the properties of
many known weil-onae b sclabons el as <, the proper-subivee relation over trees) and of
funchions for combianiny then are sanone the assertrons of onr intial tablean.

We bove avvon the soaple st sorsien of the tndincton vates which i applied only to the mitial

rows of the tablean: mts s cad verston, we may apply the mde 1o any of the rows: and we miay

Mt

PR e g g

‘ol N bl Sl Yo el <

i

o Rellhes

" —
Bl A -

strengthen or generadize the rows to which the rule s applied. In this more general version, the
rule accounts for the introduction of auxiliary subprograms into the program being constructed.
We shall avoid discnssion of auxiliary subprograms here.

We are now ready to present the most interesting segment of the derivation of the square-root
program.

THE DERIVATION

Recall that, in the theory of real numbers, the specification for the real-number separe-root program
18

sqri(r. ¢) < find & such that
22 < r and not [(g +)? < r],
where 0 << 7 and) < ¢

In other words, we want to tind an estimate z that is within a tolerance ¢ less than \/77, the exact
square root of ro where we may assue that r iz nonnegative and ¢ is positive.

We begin accordingly with the tableau

ot piig

assertions goals sqrt(r.)

1. 0<r and 0 <«

9. 122 <r | and not [zt)2 <r] P

The assertion and voal of this tablean are the mput and ontput conditions, respectively, of the
given specification: the output entry of the goal is the ontput variable of the programn.

THE DISCOVERY OF BINARY SEARCH

We are about to apply the resolition mile to goal 2 and itself. To make this step easter to
understaud, let us write another copy of goal 2.

i 2 E Ty and not [(: r’)'z Shrrl z

We have revaaned the variable of the second copy of the roal, so that the two copies have no

variables in common.

The boxed sulwentences of the two copies of the goal are uniliabler 4 most-general unifier 18

N: {z+ 2z+}

Therefore, we can apply the resolution rle hetween the two copies of yoal 2 1o obtain

Pt et adied iat Sab Jiatt el _Raf et Jhat Saé ‘S YA S el Sl Sk Y B AR N 'C"mtwm\ﬂvmrvv‘rvxﬂvvvvvvvmm

16
[2 -
i true and not[((é 1+ ¢) + () gr] if (5+ ()2 <r
and then 2+ ¢
| 22 < r and not fulse else 2
(

By application of transformatiou rules, including the rule ;

u+u - u,

this goal can be reduced to

<y if (2+e)?<r __—‘
3. and then z +
; not [(#+ 2¢)% <r| else
L _)

{We have reordered the conjnuets for pedagogical reasons only; because we use associative-com-
mmtative wtication. their actual order is irrelevant.)

According to goal 3, 1t suflices to find a rougher estimate 3. which is within a tolerance 2¢ less
than r, the exact square root of o Tor then either 2 -+ ¢ or 2 itself will be within « less than /r,
depending onwhether or not 2 ¢ is less than or equal to /r. The two possibilities are illnstrated

VT VT

h(‘l()w.

+
+~1
Do —p—
+ S—
T~

P
<

te
38

+ < \/; Case: not [;" o< \/f]

ty

Case:

Goal 3 contatns the essential idea of binary search as applied to the square-~oot problem.
Althongh the tdea scems subtle to ns it appears almost inmediately e the dertvation. The step
1z nearly nevitable: any brate-force scarch procedure would discover it

The derivation of goal 3 is logically straightforward, but the intuition behind it miay be a bit
mysterions. Let us paraphirase the reasoning in a more geometrie way, Oue mitial coal 2 expresses
that it sullices to find a real ammber 2 such that /r belongs to the hatlopen nteeval 20 2 ¢ o).
Our rewritten goal 27 expresses that it s cqually acceptable to find a veal nuber 2 such that
bedongs to the hall-open interval 1202 4)0 We shall he content to achiove cither of these woals:
ieowe shall be happy 10 (o belotess to cither of (he two hadf-open intervala. By taking 2 to be
S cowe are concatenaligs the two tervals s abtammnes o new badlopen mlerval [z 2010 20) twiee
the Tengte of the orpnnal It sudbices to find acreal nomber = sueh that (7 belones to this new,

longer interval, becanse then romnst helong to one or the olher ol the two smaller ones.

INTRODUCTION OF THE RECURSIVE CALLS

Let us continne the dervation one more step. By the well-fonnded induction enle, we may
mtroduce the iduetion hypothesis

RN “'
Bt

" LT - . « - N -

-‘\ ‘.' * .' A -'" *‘*1‘. -(\‘. ... - - - N - ;
- et ~ . T et “ T . L S . - P P . S .) * N - toe T T -t T

I Wl T v R S LS G A R R Ty T S S, Sl Sk, & LR V. PRSI VI VTGRS S U, S S S AL ST 1 U AL SR S NI WL 4

. . R e T N I . R St e AR o 3 R

A

ia.
l‘l'l<,

17

if (x, v) <y, (r, €)

then ¢f 0 <z and O < v

[Lxqrt(z, v)}gj roand

then) 0 .
L not (=L.<r1rt(f, v+ U] < .c)

l

In other words, we assume inductively that the output sqrt(z, v) of the program will satisfy the
input-output condition for any inputs z and v such that (z, v) <, (r.). The boxed subsentences
of coal 3 and the induction hypothesis are nnitiable; a most-general unifier is

O: {xer ve 2 2 sqrt{r, 20}

We obtain (after true-false transformation)

d. (r. 2¢) < (1, ©) if [sqrt(r, 2() +€]2 <r

and then sqrt(r, 2¢) +¢
: 0<r and 0< 2 else sqrt{r, 2¢)

.

Note that at this point three recursive calls sqre(r, 2¢) have been introduced into the output

cutry. The condition (0 < 7 and 0 < 2¢) eusures that the arguments v and 2¢ of these recursive
calls will satisfy the inpat condition for the program. that r is nonnegative and 2¢ is positive.
The condition {r. 2¢) <, (r. ¢) ensures that the newly introduced recursive calls caunot lead to
a nonterminating computation. The well-founded relation <, that serves as the basis for the
induction is as yet unspecified.

We onait those portions of the derivation that account for the introduction of the base case
and the choice of the well-founded relation. The final program we obtain is

sqri(r,) <« o « <maz(r, 1)
then of [qut(r. 2¢) -+ (J2 <r
then sqri(r, 2¢) 4 ¢
else sqrt(r, 2)
else 0.

A few words on this program are in order.

DISCUSSION OF TIIE PROGRAM
The program fivst checks whether the crror tolerance ¢ 1= reasonably smalll 16 ¢ is very big,
that ol rmar(ro 1) < o then the ontpat can -afely be taken to be 00 For, becanse <2 r) we have

2
“

0

A
-

And becanse mar{r. 1) < . we have 7 < cand 1< ¢, and hienee 7 < ¢ - that s,

not [(l) : «)2 <

A A At A I A R R e . . 2L R e A AL aradh e il A A el A At hel el lok Solb Nalh SRl SA R jualiondiie S e Aen B an Bok S A She Sk o f Saadl o |

18
Thoe o o e corehition me this case.
S Cos oo U e Hnds acrougher estunate sqre(r, 20), which is
Wit 2 e S L ke wheothor nereasing this estimate by o will leave it less
a0 b S oo esea b oo nots the roushe estimate s already close
AR
Teo oo e T s e b e hecanse the arrnment s donbled with
cochor o H e e e e Loered and reansive cadls are eviduated only
thie ase o oosr b e e s o e bonge b op these inere s g argiioent s,
Mo procis oo s b e s et - e Lo the proot s one <uaeh thiat
o, ,
N , f}

providoed that O <y~ marir, 1)

If the nmlnpte oeeurrences of the teenrsive can ~grrie 20) e combined Dy clin it iy corne
mot subexpressions, the program we obtan s voasonabily Cliciens 0 eopares Gogy ooarte L)

recursive calls.

Our final program is somewhit dufferent trom to toratoee proecian we oo v an the
beginning. The iterative program divides aninterval vo hodb ot e botorations T fecnc e prosrun
doubles an interval with cach recursive calll Division of the interval in balb ocenr s agaeniy as the
recursive program nuwitids, e, when the recursive calls yield ontput valnes

It 15 possible to obtain a version of the iterative prograan by formal derivation within the
deductive-tablean systen. Although the dertvation and the resaiiie progran are more complex
(it reguires two additional inputs). it was this derivition we discovered first. becanse we were
already fauiliar with the iterative program,

We fivst found the recursive program i examining the consequences of parely formad derivation
steps, not because we expected them to lead to a progriun but becanse we were looking for strategic
considerations that would rule them out. When we exannined the program initially, we suspected
an crror e the derivation. We hiad not seen programs of this form before, and we cortainly would
not have coustructed this one by informal means.

ANALOGOUS ALGORITHMS

Many binary-search aligorithins have been derived in an analogons way. Let us {ivst consider some
other real-iimerical problems.

REAL-NUMBER ALGORITHMS

Suppose a program to perform real-number division is specilied as follows: ,

div(r, ¢, () <= [ind z such that
4 <r and not [(: Fe)es< r]
where 0 <7 and 0 < 5 and) <.

Y
et

PO
ST T T At T

LONE PR s WA DR SR S g S R o

19

In other words, the program is required to yield a real number z that is within a tolerance € less
thau r/s, the exact quotient of dividing r by s. We obtain the program

divi{r, s, €) < tf c-a<r
then of [div(r, s, 2¢)+¢€]-s<r
then div(r, s, 2¢) + €
else div(r, s, 2c)
else 0.

The rationale for this progratn, like its derivation, is analogous to that for the real-number
squace root. The program lirst checks whethier the error tolerance is reasonably small, that is, if
-5 < r. If € is very big, that is, if r < ¢ - &, then the output can be taken safely to be 0. For
because 0 < r, we have

0-s<r.
Aud because r < ¢ - 5, we have 7 < (0 + ¢) - &, that is,
not [(0+c)-s <r].

Thus, 0 satisfies both conjuncts of the output condition in this case.

On the other hand, if ¢ is small, that is, if ¢ - 8 < 7, the program finds a rongher estimate
div(r. s, 2¢). which is within 2¢ less than r/s. The program considers whether in creasing this
estimate by ¢ will leave it less than /s If so, the rough estimate may be inereased by o if not,
the rough estimate is already close enough.

The termination proof for this program is also analogous to that for the square root. Although
the argument ¢ is doubled with cach reenrsive call, the other argrunents are unchianged and the
calls are evalnated only in the case tn which ¢ -8 < 7y that is, ¢ < r/s Thus, there is a uniform
upper bound on the doubled argument.

It may be clear from the above discussion that there is little in the derivations for the square-
root and division programs that depends on the properties of these funetions. More or less the same
derivation sullices to find an approximate solution to an arbitrary real-nnmber equation f(z) = r.

For i given computable finction f. we consider The specilication

solve(r,) < fiud = such that

f(z) <r and not [f("’ +) < r]

if b<u

where f{a) <r and then not (f(u) < T)

Here a and b are primitive constants and w ix a variable. In other words, we assume that there
exist real numbers a and b snch that f{a) < rand f(u) > 7 for every real u greater than b, The

20

specification is illustrated as follows:

] z Z+E€ b

Note that we do not need to assume f is increasing or even continuous; if f is not continuous,
an cxact solution to the cquation f(a) = r need not exist, but only an approximate solution is
required by the specification.
The program we obtain is
solve(r, ¢) < fa+c<b
then if f(solve(r, 2)+¢) <r
then solve(r, 2¢) + ¢

else solve(r, 2¢)
else a.

In the recursive case, in which @ + ¢ < b, the program is so closely analogous to the previous
binary-scarch programs as to require no further explanation. In the base case, in which b < ¢ + €,
the output can safely be taken to be a. For, by our input condition, we have

Jla) <r
and (again by our inpnt condition, because b < a +)
not [[(a+¢) < r].
Thus, a satisfies both conjuncts of the outpul condition in this casc.

The above prograun may be regarded as a schema, beeanse we may Lake the symbol [to
be any primitive function symbol. An cven more general binary-scarch program schema can be
derived from the specification

scarch(r,) < find z such that
p(r, 2} and not p{r, =+)
if b<u]

where p(a) and [thcu not p(r, u)

where pis a primitive relation symbol aud @ and b arce primitive constants. We obtain the schema

scarch(r,¢) < fa+c<bh
then if p(r,scarch(r, 2¢) + €)
then scarch(r, 2¢) + ¢
clse scarch(r, 2¢)
else a,

A il i nkadhal i din el MM AL A LA A sl s LA ia 1A AR Akl abd ath add aug R ol aid afh gud oS o4 ol acd o-d o b a'l u/h o 4 a'h B'A 0 nta o'n o]

21

INTEGER ALGORITHMS

The programs we have discussed apply to the nonncgative real numbers; using the same
approach, we have derived analogous programs that apply to the nonuegative integers. These
derivations require a generalization step in applying the induction rule. We have avoided prescenting
generalization and the concomitant introduction of anxiliary programs in this paper, but we give
some results ol these derivations here.

Integer square root

The integer square-root program is intended to find the integer part of /7, the real square
root of a nonnegative integer n. It can be specified in the theory of nonnegative integers as follows:

sqrt(n) <= find z such that
22 <n and not[(z+1)* < n).

I other words, the program must yield a nonnegative integer 2 that is within 1 less than /n.

In the course of the derivation, we are led to introduce an auxiliary program to mect the more
geueral specitication

sqrt2(n, i} < find z such that
22 < n and not [(z +1)?2 < n]
where 0 < 1.

In other words, we wish to find a nonnegative integer z that is within ¢ less than /n. This anxiliary
spectfication is precisely analogous to the realsniimber square-root specitication, with ¢ playing the
role of the error tolerance «.

The programs we obtain to meet these specifications are
sqri(n) & sqri2fn, 1),
where

sqrt2(n, 1) < f 1 <n
then if {sqrf'.l(n, 2) + i]2 <n
then sqri(n, 20) + 1
else sqri2(n, 21)
clse 0,

luteger quoticent

The integer quotient program can be specified similarly:

quot(m, n) <= find 2 such that
z-n<m and nol [(: 1) n < m]

where 0 < n.

RSl i - gt g ” e b A ad o
w inlialibia e A Al el et ol el Sad el d Sk £ & 0 0 04 A 8 s Sve Al Bes S:2 830 Aie st RacdnAde Ala As el af sl sl tad oh Sl Bd o |

22

In other words, we wish to find a nonnegative integer z that is within 1 less than m/n, the real-
number quotient of mn and n.

In the course of the derivation, we are led to introduce an anxiliary program to meet the more
general specification

quotd{m, n, 1) < Hud z such that
z-n<m and not[(z +1)-n < m]
where) < n and 0 < 4,

In other words. we wish to find a nonnegative integer z that is within 7 less than m/n.

The programs obtained to meet thesce specifications arc
quot{m, n) < quotd(m, n, 1)
where

quotd(m, n, 1) <= f i-n<m
then tf [quotS(m, n, 21) + i] n<m
then quotd(m. n, 2t) +1
else quotd(m, n, 2i) 1
else 0.

The derivation is again analogous.
(s}

DISCUSSION

The dertvations were first discovered manually: the real-number square-root. derivation was
subsequently reprodneed by Yelhin in an interactive program-synthesis system, The only automatic
nnplementation ot the system (Russclb [83]) is unable to construet the derivation for a simple reason:
it never attempts to apply the resolution rule to a goal and itsclf.

The result= of this mvestigation ney counter to onr usnal experience. It is common for a bit of
reasoning that secms siimple and intaitively straightforward to turn our to be dillicalt to formalize
and more diffienlt still to duplicate antomatically. Tlere the oppostle ix true: an idea that requires
acsunbstantial leap of human ingennty to discover s captured mechanically in a few casy formal

steps

ACKNOWLEDGMENTS

We would like to thank Moartin Abadi, Yoni Malachi. Eric Muller, Mark Stickel, Jonathan
Trangott, and Frank Yellin for dizenssions and helpful suggestious on the subject of this paper.

R ~.~ P R - [

- N I I TR AR
S S TAT TN R

..‘ P ._‘ - o« . . . - » " b -
R b S it AL A A AR A AN A et T

L.

- - . D c .t - -
AT RUFNTIY S, CER CR VI

= N e v ks

23
REFERENCES
Dershowitz and Manna (77)
N. Dershowitz and Z. Manua, The evolution of programs: Automatic program modifica-
tion, IEEE Transactions on Software Engineering, Vol. SE-3, No. 6, November 1977, pp.
377 385,
Manna and Waldinger (80)]
Z. Manna and R. Waldinger, A deductive approach to program synthesis, ACM Transar-
tions on Programming Languages and Systems, Vol. 2, No. 1, January 1980, pp. 90 121.
Manna and Waldinger {85
Z. Manna and R. Waldinger, Special relations in automated deduction, Journal of the
ACM, 1985, to appecar.
Murray [82]
N. V. Murray, Completely nonclausal theorem proving, Artificial Intclligence, Vol. 18,
No. 1, 1082, pp. 67-85.
Robinson [79]
J. A. Robinson, Logic: Form and Function, Northi-Holland, Now York, N. Y., 1979.
Russell [83]
S. Russcll. PSEUDS: A prograinming system using deductive synthesis, Technical Report,
Computer Science Department, Stanford University, Stanford, Calif., September 1983.
Smith {85
D. R. Smith. Top-down synthesis of simple divide-and-conquer algorithms, Artificial In-
telligence, 1985, to appear.
Stickel [81]
M. Ii. Stickel. A unification algorithm for associative-commutative functions, Journal of
the ACM, Vol. 28, No. 3, July 1981, pp. 423 434.
Wensley [59]
J. H. Wensley, A class of nonanalytical iterative processes, Computer Journal, Vol. 1,
January 1959, pp. 163-167.
'.\;":'{.:-;::: T ey . ~'.._ '.-‘-.. ._‘._.‘ ._:"“.~ R R TR - .‘.‘ P f."_. ‘:-

.7
.

P B - . - . - a . .
> ERRIPRPRY IP R B SPA SPEOP I R TS VPV o ol nlia Al s A '..L'..&i'_&'..)'_:. .y

May 1985 Report No. STAN-C'S-85-1051
AFOSR-TR. 96-2 1] ¢4

Special Relations in Automated Deduction

by
|

Zohar Manna

Richird Waldinger

Department of Computer Science

Stanford University
Stanford, CA 94305

s - od SaSead~ ans oo anv aes Aol AR Sa BASdch Aot am Sat A et lia g i Ll abi akt AALAE A ARAA Sl A Sa i oS A

SPECIAL RELATIONS IN AUTOMATED DEDUCTION

Zohar Manna Richard Waldinger

Computer Science Department Artificial Intelligence Center

Stanford University SRI International
ABSTRACT

Two deduction rules are introduced to give streamlined treatment to relations of special importance in an
automated theorem-proving system. These rules, the relation replacement and relation matching rules, gen-
eralize to an arbitrary binary relation the paramodulation and E-resolution rules, respectively, for equality,
and may operate within a nonclausal or clausal system. The new rules depend on an extension of the notion
of polarity to apply to subterms as well as to subsentences, with respect to a given binary relation. The rules
allow us to eliminate troublesome axioms, such as transitivity and monotonicity, from the system; proofs are
shorter and more comprehensible, and the search space is correspondingly deflated.

1. INTRODUCTION

In any theorem-proving system, the task of representing properties of objects is shared between axioms
and rules of inference. The axioms of the system are easier to introduce and modify, because they are
expressed in a logical language. However, because axioms are declarative rather than imperative, they are
given no individual heuristic controls. The rules of inference, on the other hand, cannot be altered without
reprogramming the system, and they are usually expressed in the system’s programming language. However,
the rules can be given individual heuristic controls and strategies.

It is customary to use rules of inference to express properties of the logical connectives, which are the
same from one theory to the next, and to use axioms to express properties of constants, functions, and
relations, which may vary. It 1s hazardous, however, to express certain properties of functions and relations
by axioms. Some properties of the equality relation, for example, are rarely represented axiomatically. For
one thing, in a first-order system indefinitely many axioms are necessary to represent the substitutivity
property of this relation, depending on how many function and relation symbols are in the vocabulary of
the theory.

For instance, for a binary function symbol f(z,y), we must introduce two functional-substitutivity ax-
toms,

ifr=y ifrz=y
then f(z,2z) = f(y,z) then f(z,z) = f(z,v),

and for a binary predicate symbol p(z, y}, we must introduce two predicate-substitutivity axioms,

and

' tfz=y
then if p(z,xz) then p(z,y).

if z=y

then if p(z,z) then p(y,z) and

An abbreviated version of this paper appears in the proceedings of the Twelfth International Colloquium
on Antomata. Langnages, and Programming (ICALP), Nafplion, Grecce, July 1985.

This research was supported in part by the National Science Foundation under grants MCS-82-14523
and MOS-81-03565, by the Defense Advanced Research Projects Agency under contract N00039-84-C-0211,
by the T'mited States Air Force Office of Scientific Research under contract AFOSR-81-0014, by the Office
of Naval Rezearch under contract N00014-84-C-0706, and by a contract from the International Business
Machies Corporation,

A e e e tat MM et T aTe et rTe
B e D R L S R

TS

S s B adbo

-, o

L e e e e e ey -'-‘-‘-'~’-’h":'-';"~".'-‘— . L
SRV L VIR, Pl T L VL P, P, U W PRV, W0, PO U0, P, T Sy W S

N st it Gttt At ue™ Jiattullatt i S i Rl el A ek e Bl Sk S A G RSl A 10 BNe fie Are ben N A0 SAe ie \io et cl batal Nl ad sl ol 4 ha"alatalb sal At Al il daks R b Al el ath oty |

N
o v,
3
XY
L]
Ty
o 2 1. INTRODUCTION
o
) (We tacitly quantify variables universally over the entire sentence.) In general, for each n-ary function
AN symbol f(z;,z,), we introduce n functional-sustitutivity axioms. Similarly, for each n-ary predicate

. symbol p(z,. ..., z,), we introduce n predicate-substitutivity axioms. |
",

AN ‘
o More importantly, axioms for equality are difficult to control strategically, because they have many |
Y . . e .

_ ." irrelevant consequences. An axiom such as transitivity,

- tfr=y and y==z

-~
S then z = z,

S ;
- will allow us to derive logical consequences from any sentence mentioning the equality relation. Few of these s

::\.: consequences will have any bearing on the proof.

In response to this problem, some theorem-proving researchers have paraphrased their theories to avoid
explicit mention of the equality axiom (e.g., Kowalski [79]). Others have adopted special inference rules for
dealing with equality. In resolution systems, two equality rules, paramodulation (Wos and Robinson [69])
and E-resolution (Morris [69]) have been found to be effective. Variations of these rules are used in many
theorem provers today (e.g., Boyer and Moore [79], Digricoli [83]). By a single application of either of these
rules, we can derive conclusions that would require several steps if the properties of equality were represented
axiomatically. The proofs are markedly shorter, and the search spaces are even more dramatically compressed
because the axioms and intermediate steps are not required. Within their limited domain of application,

]

3

}_'.-: theorem-proving systems using these rules surpass most human beings in their capabilities.

x:‘-\

. \.-:

o

- SPECIAL RELATIONS
\ ‘._'.
: " The authors became involved in theorem proving because of its application to program synthesis, the deriva-
e tion of a program to meet a given specification. We have been pursuing a deductive approach to ihis problem,
o under which computer programming is regarded as a theorem-proving task. In the proofs required for pro-
" gram synthesis, certain relations assume special importance. Again and again, proofs require us to reason

; not only about the equality relation, but also about the less-than relation < (over the integers or reals),

S the subset relation C, the sublist relation =;,¢, or the subtree relation =<,,... To represent the transitivity
::4’:: and other properties of these relations axiomatically leads to many of the same problems that were faced
\::‘- in dealing with equality: the axioms apply almost everywhere, spawning innumerable consequences that
:‘ \ swamp the system. Yet we would not want to implement a new inference rule for each of the relations we

Ht find important.

f.#‘. Both the paramodulation and the E-resolution rules are based on the substitutivity property of equality,
"..‘-i' that if two elements are equal they may be used interchangeably; i.e., for any sentence P(z, y), the sentence
e
[- .
bk ifz=y
wot then if Pz, y) then Py, z)
o= 13 valid. Here £{v) is the result of replacing in P{z, y) certain (perhaps none) of the occurrences of z with
_,-:: y, and certain (prihaps none) of the occurrences of v with z. (The notations we use here informally will be
Nerts defined systemuatically later on. We assume throughout that sentences are quantifier-free.)
D
iy , . . o . . . L
" We observe that many of the relations we regard as important exhibit substitutivity properties similar
g to the above property of equality, but under restricted circumstances. For example, over the nonnegative

integers, we ran show that

of £
then af A<z b
ther a <y b

e e o L e e IR - BRI R

e - - " . r LT B . - ERRES EERC R T A IEPUL . S . - " LI A -, - .
LIEIER TR G GRS WEAT AP RSV R PRTGY R VG VR L PRSP L PR P WV v DT i T VO

s et aRat okl ' L otk ot a e CwowY W rUROT Wy ~Aale u NN TN TR T W W W e T T TR T T T T T LT AT L TR LT W LT LT TR L. '-_1
L

1. INTRODUCTION 3

-t

'

and, over the lists, we can show that

- If Z Xpiat Y !
1 then if u€z !
then u < y.

Knowing that z < y or that z <,,,+ y does not allow us to use z and y interchangeably, but it does allow us
to replace certain occurrences of z with y, and vice versa.

. Based on such substitutivity properties, we can introduce two deduction rules that generalize the
paramodulation and E-resolution rules for equality to an arbitrary relation, under appropriate circumstances.
Just as the equality rules enable us to drop the transitivity and substitutivity axioms for equality, the new
relation rules enable us to drop the corresponding troublesome axioms for the relations of our theory.

. POLARITY

For the equality relation, knowing that z = y allows us to replace in a given sentence any occurrence of
z with y and any occurrence of y with z, obtaining a sentence that follows from the given one. For an
arbitrary binary relation <, knowing that z « y still may a' ~w us to replace certain occurrences of z with y
and certain occurrences of y with z. We describe a syntactic procedure that, for a given relation —, identifies
which occurrences of z and y in a given sentence can be replaced, provided we know that r = y.

More precisely, we identify particular occurrences of subexpressions of a given sentence as being positive
(=), negative (=), or both, or neither, with respect to <. If z —« y, positive occurrences of r can be
replaced with y, and negative occurrences of y can be replaced with z. In other words, we can establish the
substitutivity property that, for any sentence P{z*, y7), the sentence

if <y
then if P(z¥,y~) then P(y*, z7)

Pl el b iy

» is valid (over the theory in question). Here P{y*, £~) is the sentence obtained from P(z*, y~) by replacing
certain positive occurrences of z with y and certain negative occurrences of y with z. With respect to the
equality relation, every subexpression is both positive and negative; therefore, if we take —« to be =, this
s property reduces to the substitutivity of equality.

Our new rules are based on the above substitutivity properiy just as the equality rules are based on the
substitutivity of equality. The new rules, like the equality rules, allow us to perform in a single application
inferences that would require many steps in a conventional system. Proofs are shorter and closer to an
intuitive argument; the search space is condensed accordingly.

NONCLAUSAL DEDUCTION

The paramodulation and E-resolution rules are formulated for sentences in clausal form (a disjunction of
! atomic sentences and their negations); on the other hand, the two corresponding rules we introduce apply to
' free-form sentences, with a full set of logical connectives (cf. Manna and Waldinger [80", Murray 182}, Stickel

182]). By adopting such a nonclausal system, we avoid the proliferation of sentences and the disintegration

of intuition that accompany the translation to clausal form. Also, it is awkward to express the mathematical
X induction principle in a clausal system, hecause we must do induction on sentences that may require more
‘ than one clause to express. On the other hand, our rules are also immediately and directly applicable to
clausal theorem-proving systems.

. -
ES s
DN P R Y
& ol Al o

’ NI 7 T R R N RS I LN LI I
.-,.4-.‘4_:»..‘ T ‘_, A >

4
o

1.

AR

4 2. PRELIMINARIES

OUTLINE

In the following section, Preliminaries, we sketch the basic concepts of logic that we use in this paper and
we briefly outline a nonclausal deduction system. Readers who are familiar with this material should skim
the section anyway, to become acquainted with our terminology and notations.

In Relational Polarity we introduce our central notion, the polarity of a subexpression of a sentence
with respect to a given relation.

We then describe, in The Relation Replacement Rule, a new deduction rule that allows us to replace
a subexpression of a sentence with another expression, under a wide variety of circumstances. This is our
generaligation of the paramodulation rule.

The rules in our system can be applied when two subexpressions can be unified. However, our second
deduction rule, described in The Relation Matching Rule, allows us to draw a ccnclusion even though
two subexpressions fail to unify. (Typically this rule is applied when the two subexpressions “nearly” unify.)
This is our generalization of the E-resolution rule.

In Strengthening we tighten up our theory of polarity to allow the relation replacement rule to draw
a stronger conclusion, in many circumstances.

In Extensions, we indicate how the notions in this paper can be extended to apply to sentences
which contain explicit quantifiers and to define polarity with respect to functions as well as relations; we
develop more general, conditional versions of all the rules; and we show how our results apply to problems
in automated planning.

2. PRELIMINARIES

Before we can define our central notion, that of polarity of a subexpression with respect to a relation, we
must introduce some concepts and notations. We will be brief and informal, because we believe that this
material will be familiar to most readers.

EXPRESSIONS

We consider terms composed (in the usual way) of the following symbols:
e The constant symbols a,b,¢,ay, ..., s,t, and special constants such as 0.
e The variable symbols v, v, w, z,y,uy,
e The n-ary function symbols f, g, h, fi, ... and special symbols such as +.
Thus a, z, f(a, z), and f(a,z) + 0 are terms.
We consider propositions composed (in the usual way) from terms and the following symbols:
e The truth symbols (logical constants) true and false.
e The n-ary relation symbols p, ¢, r, p1, ... and special symbols such as = and <.
Thus true and p(a, g(z)) are propositions.

We consider sentences compased (in the usual way) from propositions and the following symbols:

e The logical connectives not, and, or, if-then, = (1f-and-only-1f), 1f-then-else.

(il S e e}

e " ¥ ” el LAt Al S i a2 N S AN et RSa i Rhe Gite Sia Ate Ale e Aha ‘et b Cade hia vl *Al Sah Bl Y i Sod S T‘T

2. PRELIMINARIES 5

Thus (a < 0) or not(p(a, g(z))) is a sentence.

The operators consist of the function and the relation symbols. The ezpressions consist of the terms and
the sentences. Note that we do not include the quantifiers V and 3 in our language. The ground expressions
are those that contain no variables. The expressions that occur in a given expression are its subezpressions.
They are said to be proper if they are distinct from the entire expression.

REPLACEMENT

We introduce the operation of replacing subexpressions of a given expression with other expressions. We
actually have two distinct notions of replacement, depending on whether or not every occurrence of the
subexpression is to be replaced.

Suppose s, t, and ¢ are expressions, where s and t are either both sentences or both terms. If we write
e as e[s], then e[t] denotes the expression obtained by replacing every occurrence of s in e[s] with t; we call
this a total replacement. If we write ¢ as e(s), then e(t) denotes the expression obtained by replacing certain
(perhaps none) of the occurrences of s in e(s) with ¢; we call this a partial replacement.

When we say we replace certain (perhaps none) of the occurrences of s, we mean that we replace zero,
one, or more occurrences. We do not require that e[s] or e(s) actually contain any occurrences of s; if not, e[t]
and e{t) are the same as e[s] and e(s), respectively. Also, while the result of a total replacement is unique,
a partial replacement can produce any of several expressions.

For example, if e[s] is p(s, s, b), then ¢[t] is p(t, ¢,). On the other hand, if e(s) is p(s, s, b}, then e(t) could
be any of p(s, s, 8}, p(¢,s,8), ps,t,b), or p(t, t,b). If we want to be more specific about which occurrences
are replaced, we must do so in words.

A partial replacement is tnvertible, in the sense that any sentence e(s) can be retrieved by replacing
certain occurrences of t in e(t) with s. The occurrences of ¢ to be replaced are precisely the ones introduced
in obtaining e(t) in the first place. For example, if e(s) is p(s, s,t), and e(t) is p(s,t,t), then e(s) can be
retrieved by replacing the newly introduced occurrence of t in e(t) with s.

Total replacement, on the other hand, is not invertible in the same sense. For example, if ¢[s] is p(s, s, t},
then eft| is p(¢,t,t), and e[s] cannot be obtained from et] by replacing every occurrence of t in e[t] with s.

MULTIPLE REPLACEMENT

We can extend the definition to allow the replacement of several subexpressions at once:

Suppose 381, ...,Sn,t1, --.,tn, and e are expressions, where the s; are distinct and, for each 1, s;
and t, are either both sentences or both terms. If we write e as e[sy, ..., s,], then e[t;, ..., t,.] denotes
the expression obtained by replacing simultaneously every occurrence of each expression s; in e with the
corresponding expression t,; we call this a multiple total replacement. If we write e as e(sy, ..., s,), then
e{ty, ..., t,) denotes any of the expressions obtained by replacing simultaneously certain (perhaps none) of
the occurrences of some of the expressions s; in e with the corresponding expression t,; we call this a multiple
partial replacement.

The replacements are made simultaneously in a single stage. For example, if e[a, b] is f(a,b), then et ¢|
is f(b,¢). On the other hand, if e{a, b) is f(a,b), then e(b, c¢) could denote any of f(a,b), f(b, b}, fla,c). or
f{b,c). Even though a is replaced by b and b is replaced by ¢, the newly introduced occurrences of 6 are not
replaced by ¢.

The replacements are made from the top down. For example, if e[p(a, b), al is p(a,b), then e'truec, b is

true. We replace bheth 1 {1, 4} and z, but a is a subexpression of p(a, b}). In such cases, by conventian, it is the
e e I T D e el T e e e e
L’ an i P A AT R SRR RS RS CR R R PR S R A ata sl

Bana il i ol ks abl il s bl B gl ue B BT 8- il e A7 Mink) ¥ idh Sadh Sk Sadh Nk, Sl Sl Mind el tind et Skt adhe Shihe Aaiie iy e i iha e " i - Aihe o LA e Sl LA A A b A AL L Y e |
b

6 2. PRELIMINARIES

outermost subexpression that is replaced. (For the corresponding partial replacement, either subexpression
can be replaced.)

By attaching a numerical superscript, we can specify exactly how many subexpression occurrences are
to be replaced in a partial replacement. Suppose sy, ... s,,t1, ..., ¢t,, and e(s;, ..., s,) are expressions
and k is a nonnegative integer, where the s; are distinct and, for each 7, s; and ¢, are either both sentences
or both terms. Then e{t;, ..., t,)* is the result of replacing in e{s;, ...,s,) precisely k occurrences of
$1, .- ., 8, with the corresponding expression ty, ..., t,. [We assume that at least k occurrenes exist.|

Note that precisely k occurrences are replaced altogether. For example, suppose e{a,b) is ¢ < f{a, a,b); .
then e{a + 1,5 + 1)? could denote any of

ce< fla+La+14,b), c<fla+tl,ab+1), or c¢< fla,a+1,b+1),

but not
c< fla+1l,a+1,6+1) or c< fla+1,a,b).
We may also write e(t;, t2, ..., t,)*¢ to indicate that precisely k or £ replacements are made in the expression
e(31,52, -y Sn)-
SUBSTITUTIONS

We have a special notation for a substitution, indicating the total replacement of variables with terms. A
theory of substitutions was developed by Robinson [65], in the paper in which the resolution principle was
introduced. A fuller exposition of this theory appears in Manna and Waldinger [81].

For any distinct variables z;,z,, ..., 2z, and any terms t;,t2, ...,t,, a substitution

6 : {Ilhtl, Ty — g, ...,In‘—tn}

is a set of replacement pairs z; « t;,. Note that there are no substitutions of form {z « a,z « b, ...},
where a and b are distinct. (If a and b are identical, then the set {z «— a,z «— a, ...} is the same as the set
{z « a, ...}.) The empty substitution { } is the set of no replacement pairs.

For any substitution § and expression e, we denote by ef the expression obtained by applying 6 to e,
i.e., by simultaneously replacing every occurrence of the variable z; in e with the expression t,, for each
replacement pair z; «— ¢, in §. We also say that ef 1s an instance of e. For example,

r(z,yl{z —y, y—a} = p(y,a).
The empty substitution { } has the property that e{ } = e for any expression e.

Two substitutions # and A are said to be equal if they have the same eflect on any expression, i.e., if,
for any expression ¢,

", nf; = f‘\

n“_.d

- .

A Frr example,

Fal .'

“'

o (re suet) = zeaue bz s
A Two subsztitutions » and A are equal if they agree on all variables, 1e., if % . 7A for all variahle. z.
\::-.

S For any varlable 7, term ¢, and substitntion 7, the result
\::._ (re t}n?

A

» 2. PRELIMINARIES 7

of adding the replacement pair z « ¢ to ¢ is defined to be the substitution that replaces = with ¢ but agrees
with 6 on all other variables. It is thus defined by the properties

A substitution 6 is said to be more general than a substitution 6’ if there exists a substitution A such that
8X = 4’'. For example, the substitution 8 : {z « y} is more general than the substitution 8’ : {z «— qa, y — q},
because

» z((z «—t) o) =¢
k-, y((z « t)o8) = yf, for all variables y distinct from z.
Note that § may already replace z with some term t'; if so, that replacement is superseded by the new one.

:: For example,

-, (ye—b)o{} = {y 1}

y (z—a)o{y—b} = {z—a,y—b}

(y—clo{z—a,yeb} = {z+—a, ye—c}

- (2= 2) o {z —a} = {}.
K N We write (z — t) o (y «— t') 0§ as an abbreviation for (z «— t) o ((y « t') 0 §).

N The composition 8 of two substitutions § and X is defined by the properties

2 {}» = A
v ((z—t)08)A = (z+—tA)o(8A)

‘-: for all variables z and terms t. The most important property of the composition function is that applying

. the composition of two substitutions § and A to an expression e is the same as applying first one and then

the other; that is, e{fA) = (ef)A. The empty substitution can be shown to be an identity under composition;

K~ that is, { }6 = 6{} = 4, for all substitutions 8. Also, composition can be shown to be associative; that is,
8(Ap) = (6A)p for all substitutions 4, A, and p.
L

- The definition of composition suggests a way of computing it. For example,
-\.“
N {y—glz)Hy —z, 28} = (y—g(8) o{y — =, 28}

. = {y+—g(b), z — b}
& and therefore

o (zey yegldy =228} = (zeg)ofye o), z— b)
=
k = {y —g(b), z —b}.

o Note that the composition of substitutions is not commutative. For example, {z «— y}{y ~ z} =
. {y—z}and {y—z}{z —y} ={z —y}, but {y — 2} # {z — 4}.

fHly—a} = {e—yHy—0a} = {g—ay—a} =7

On the other hand, § : {z «— y} is not more general than the substitution ¢ : {z — a}, because there is no
substitution A such that

6x = {z—y}r = {z—a} = ¢

A substitution is regarded as more general than itself, because #{ } = # for any substitution 8. It is
possible for two distinct substitutions to be more general than each other. For example, § : {z — y} and
6" : {y « z} are more general than each other, because

Blyez} = {z-w{y -z} = {ye1z} =6

AR \.',~.‘.\;
PVRVRYR YL

N X
N ‘ll"}

X Y
NS

!

Dol A s~

‘r')”_'r @8 X

2
(2 Tt T Wy

o b

8 2. PRELIMINARIES

and

0 {z—y} = {y—zH{z—y} = {z 1y} = 4.

UNIFIERS

A substitution 6 is said to be a unifier of two expressions e and ¢ if
ed = &9,
that is, if 6 and €0 are identical expressions. Two expressions are unifiable if they have a unifier.
For example, the substitution
9: {z+—b, y+—2z}
1s a unifier of the two expressions
e: f(z,2) and €: f(b,y),
because ef = &) = f(b,z). Thus, ¢ and & are unifiable. The substitutions
¢: {z—b,z+y}
and
p: {z+ b y+—w, z+— w}
are also unifiers of these two expressions. Thus, unifiers of expressions are not unique.

The expressions p(a) and p(b) are clearly not unifiable and neither are the expressions ¢(z, f(z)) and
q(g(y), y). The expressions z and f(z) are also not unifiable. Because z is a proper subexpression of f(z), we
know z0 is a proper subexpression of (f(z))8, for any substitution 6; hence zf and (f(z))8 are not identical.

A substitution § is said to be a most-general unifier of two expressions e and ¢ if 4 is a unifier of ¢ and ¢
and if @ is more general than any unifier of e and €. For example, the distinct substitutions 8 : {z «— b,y « z}
and ¢ : {z «— b,z «— y} are both most general unifiers of the expressions ¢ : f(z,z) and & : f(b,y). Thus,
most-general unifiers are not unique. It is clear, however, that all most-general unifiers of two expressions
are equally general, i.e., each is more general than any of the others.

There is a unification algorithm (Robinson [65]) for determining whether a given pair of expressions is
unifiable and, if so, for preducing a most general unifier.

We can extend the notion of unifier to apply to a list of pairs of expressions. A substitution f is said to
be a stmultaneous unifier of the list

<<61,C’:>, (62)e~2)1 ey (Cn,é\;l))
of pairs of expressions if
€10 = €16, exfd =38, ..., and e, = ¢,6.

(Note that we do not require that e;§ = e;8, for distinct v and j.) We may also say that § is a
simultaneous unifier of e; and €7, of e and €2, ..., and of ¢, and €,. A list of pairs of expressions is
stmultaneously unifiable if it has a simultaneous unifier.

A list may fail to be simultaneously unifiable even though the expressions of each pair it contains are
unifiable independently. For example, the list of pairs

(z,g9(y)), {flz),9)

) e > sa bt i A A R il NS e T A A Mt alialh Sadh oy ok vaheinllaal o ol mal sak ok daib valh vnk sah ol s s b bal bal Sal sl sab sob Sl tal i "'“"l"“""“

2. PRELIMINARIES 9

is not simultaneously unifiable, even though the expressions z and g(y) are unifiable, by the substitution
{z «~ g{y)}, and the expressions f(z) and y are unifiable, by the substitution {y «— f(z)}.

For any list of pairs of expressions, a simultaneous unifier is most general if it is more general than any
other simultaneous unifier.

We can extend the notion of unifier further to apply to a list of lists of expressions. A substitution 6 is
said to be a simultaneous unifier of the list

~

~ ~
((el)é‘isela)’ <e21e2le2))1 LRI (en)é:né:n))l

of lists of expressions if

~
~

610 = 519 = 810 =
* e2f = 630 = 650 =
e = 6.6 = é8 =

We may also say that 8 is a simultaneous unifer of ¢;,¢7,€1, ..., of e2,62,€2, ..., and of e,,én, 65,
The notion of most-general simultaneous unifier and the unification algorithm may be extended accordingly.
The notation is more complex but the concepts are the same.

SUBSTITUTION AND REPLACEMENT

We sometimes find it convenient to use the replacement and substitution notations together. Suppose s, ¢,
4 and e are expressions, where s and t are either both sentences or both terms. Let § be a substitution. If we
) write e as e[s], then

eft]
denotes the expression obtained by replacing every occurrence of sf in ef with t. If we write ¢ as e(s), then
ed{t)
denotes the expression obtained by replacing certain (perhaps none) of the occurrences of 88 in ef with ¢.
For example, consider the expression
e: p(f(z,a)) or q(f(z,y)) or r(f(b,a))
and the substitution
6: {z—b, y+—a}.
If we write e as e[f(z, a)|, then ef[g(c)] is

p(9(c)) or q(glc)) or r(g(c)).

Note that two of the replaced occurrences of f(z,a)d in ef do not correspond to occurrences of f(z,a) in ¢;
they were created by application of the substitution 6.

r INTERPRETATIONS

| We shall use the Herbrand notion of interpretation, in which the elements of the domain are identified with
the terms of the language.

T S S e M., . ST P U ST IO Sl - e T T et AT e T TR Tt Tt
ﬂ_-'. '.“' Sl ."’ L "-;’._, q PO N L ™ WAt e e e T et T T AT O ‘_ ., "‘.}“"{ ‘!{ - -‘,\(. v ol LN ‘{- (.“‘- "/.-_“ K
a h R " 3 D ol }

AN . £ ait gl andal daladal

N - e
\'{:\‘

\. “0
\":\‘
=
L

I :

A 10 2. PRELIMINARIES
o
° An 1interpretation] is an assignment of truth values, either T (true} or F (false}, to every ground

o proposition (i.e., to every proposition that contains no variables). If I assigns T [or F| to a ground proposition,
*r:. that proposition is said to be true (or false] under I. The truth |or falseness] of a nonpropositional ground
&':_"-: sentence under an interpretation J may be determined from that of its propositional constituents by the
f'-r:n familiar semantic rules for the logical connectives.

)

st A nonground sentence P is true under I if every ground instance of P is true under J; otherwise, P is
. false under I. Note that, according to this definition, free variables have a tacit universal quantification.
o
A We can now define the notions of implication and equivalence between sentences. The sentences
.':".:. P, P2, Pa, ... imply a sentence Q if, for any interpretation J,
-
M .

- if P, P2, Pz, ... are all true under I,

then Q is true under J.

o
+EYRY Note that if P implies Q, it is not necessarily the case that the sentence (if P then Q) is valid. For

N N

.'.“-.‘ example, p(z) implies p(a), because free variables are taken to be universally quantified. But the sentence
4 '4‘.’

" (sf p(z) then p(a)) is not valid: its instance (if p(b) then p(a)) is false under any interpretation for which
N'J p(b) is true and p(a) is false.
¥,

Two sentences P and Q are equivalent if, for any interpretation J,

LS
~L P is true under J
N if and only if
R Q is true under I.
o Hence P is equivalent to Q if P implies O and Q implies P. For example, the sentences p(z) and p(y) are
equivalent.
¢ "-\"
] :‘::: Lemma (instantiation)
T
S For any sentence 7 and substitution 8, 7 implies 74. g
k) f .-
E
\ "\ Both total and partial replacement exhibit the following value property:
gt
Pl Suppose P, Q, and ¥ are ground sentences and [is an interpretation. Then
b
::x":- if P and Q have the same truth value under 7,
YA then F[P] and 7[Q| have the same truth value under J.
b Also,
. .
.r.:J': if P and Q have the same truth value under I,
Ty then F(P) and 7(Q) have the same truth value under J.
v,
2. A A corresponding value property applies to multiple replacements.
SN Remark
\ -- ‘l
:-’ The value property applies only to ground sentences, not to sentences with variables. For instance, let
R P be the sentence p(z), let Q be the sentence faise, and let F{P| be the sentence (not p(z)). Consider an
L interpretation I under which
ey p(a) is true and p(b) is false.
:‘::-" Then (by the definition of truth for a nonground sentence) p(z) is false under J and hence
_i"r p(z) and false have the same truth value under I.
o
:‘:'J':
S
"..".‘. s el 4 el e ml e et et DRI L I I RN B SR Wt I UL IO B S R I RO I O R s Tt T T A et et et AUV EPL AR
e A AT . T A L f-..'s.{\. RIS s

MO i ot 2" oAS® bt R b ks it ek Lut ab bok ek it B Aat dan Snt Soliiad Aad -Sak il 2l ek’ Ak Bl e kAdl N AL A e A ' Rha dale Soa Rhe B0 Sy Ahe Ri AR S "ARa Rl WL ML W B j

2. PRELIMINARIES 11

On the other hand {by the definition again) not p(z) is also false under I and hence
(not p(z)) and (not false) do not have the same truth value under I,

contradicting the conclusion of the value property. 2

THEORIES
A theory is a set of sentences T that is closed under logical implication: If T implies a sentence P then P
belongs to T. A member of a theory T is also said to be validin T.

A theory T is said to be defined by a set of sentences A if T is precisely the set of sentences implied by
A. We shall also say that A is a set of azioms for T .

An interpretation I is said to be a model for a theory T if every sentence of T is true under J.
For example, let T be the set of sentences implied by the transitivity axiom,

ifz<y and y<z
then z < z,

and the trreflezsvity axiom,
notz < z.
Then T is a theory, defined by these axioms. The asymmetry property

if z<y
then noty <z

is a (valid) sentence of this theory.

RELATIONS
We need some special terminology for speaking about relations. Henceforth, let us consider a particular
theory. When we speak of validity, we shall mean validity in that theory.
Let p and ¢ be n-ary relations. Then we say that p tmplies ¢ if
if p(z1,22, ...,Zn) then q(z1,22, ..., 2Zn)
is valid (in the theory under discussion). We also say that p is equivalent to g if
plz1, 22, ..., zn) = q(Z1, 22, ..., Z0)
is valid.
Let < be an arbitrary binary relation. We shall say that, over a given theory, ¢ is reflezive if
T~z
is valid (in the theory); = is srreflexive if
not (z < 1)

i3 valid; < is total if

=<y or T =1y or Yy <z

4 T 'I::
U Y -

i’ s

12 2. PRELIMINARIES

is valid; < is transitive if

if (£ <y and y <2) then z <z
is valid; and =« is symmetric if

tf £ <y then y <=z
is valid.

We regard logical connectives as relations on the set of truth values {T,F}. For instance, the implication
connective (if P then Q) is the relation that holds if P has value F or if P and Q both have value T; we may
read it as “P is falser than (or as false as) Q.” The equivalence connective P = Q is simply the equality
relation on {T,F}. Note that, viewed as binary relations, the implication connective if-then is reflexive, total,
and transitive, and the equivalence connective = is reflexive, transitive, and symmetric.

ASSOCIATED RELATIONS

For each binary relation, we shall be concerned with certain associated relations.

Consider an arbitrary binary relation z < y (read as “z is related to y”). The reflezive closure = of <
is defined by

zfy = (z<yorz=y).
The srreflezive restriction < of —« is defined by
<y = (z<y and not(z=y)).
The snverse » of « is defined by
Iy = y»r I
The negation # of <« is defined by
zAYy = not(z <y).

We use > and > to denote the inverses of < and <, respectively, and # and Z to denote their negations. If
we are using the prefix notation p(z,y) for a binary relation, we denote its reflexive closure by B(z,y), its

irreflexive restriction by ;(:c,y), and its negation by p(z,y).

The following proposition connects the relations associated with a given binary relation:
Proposition (negation of associated relations)

Consider an arbitrary binary relation <.

The negation # of the reflexive closure of <« 1s equivalent to the irreflexive restriction of its negation
#, that is,

Ay if and only if (z Ay and not(z =y)).

The negation £ of the irreflexive restriction of —« is equivalent to the reflexive closure of its negation

4, that is,

TAyY if and only if (z Ay or z=y).

4

T L Aal Aal ool Aog o S B- A AP Bh S ol - nad addainl add addh - ofih ekl tadht ARt et et gt ot Ml Hak fd Sl b hdnts it A ia< bt oAl ol il AR AR ANE SRR A

3. RELATIONAL POLARITY 13

3. RELATIONAL POLARITY

We are now ready to define our key notion, the polarity of a subexpression with respect to a given binary
relation. We actually define the polarity of a subexpression with respect to two binary relations, -, and
—3. This notion is to be defined so that, if the subexpression is positive, replacing that subexpression with a
larger expression (with respect to <) will make the entire expression larger (with respect to <z). Similarly,
if the subexpression is negative, replacing that subexpression with a smaller expression (with respect to)
will make the entire expression larger (with respect to «,}.

We begin by defining polarity for the arguments of an operator (i.e., function or relation).
Definition (polarity of an operator)
Let f be an n-ary operator and «<; and =<3 be binary relations. Then
e f is posstive over its t1th argument with respect to <; and 2 if the sentence

1.f T <Yy
then f(zi,..,Zio1,Zy Zig1y--s2n) %2 F(21) -1 Zic 1, Y, Zit1s o2 Zn)

is valid. In other words, replacing = with a larger element y makes
f(zll R S TR TR T S UL zn)
larger.

e f is negative over its :th argument with respect to <; and ~; if the sentence

f z <1y
then f(zi, ..., 2i—1,¥, Zit1, -, Zn) <2 f(21, o0, Zic1, T, Zig 1,y -oey Zn)

is valid. In other words, replacing y with a smaller element z makes
f(zll ey =1, Yy Zigdy ey z"-)

larger. J

We illustrate this notion with two examples.
Example

Suppose our theory includes the finite sets and the nonnegative integers. Take f(z) to be the cardinality
function card(z), which maps each set into the number of elements it contains. Take —; to be the subset
relation C over the finite sets and <3 to be the weak less-than relation < over the nonnegative integers.

Then the card function is positive over its first (and only) argument with respect to the relations C and
<, because the sentence

if zCy
then card(z) < card(y)

is valid (in the theory). a
: Example
.\'. Consider the theory of the integers. Take f(z;,z2) to be the less-than relation z; < z;. Take z «; y to

be the predecessor relation z <;,cq ¥, which holds if z = y ~ 1, and take <; to be the if-then connective.
- (Recall that we regard connectives as relations on the set of truth values.)

14 3. RELATIONAL POLARITY

Then the less-than relation < is negative over its first argument with respect to <p,.q and if-then,
because the sentence

tf T <prea ¥
then if y < z; then z < 29

is valid. Also, < is positive over its second argumeut with respect to <p,.q and sf-then, because the sentence

‘f z <prcd Yy
then if z; < z then z; <y

1s valid. 4

It follows from the definition that, for any n-ary operator f and binary relations <; and «3,

f is positive over its tth argument with respect to =<, and —;
if and only if

f is negative over its 1th argument with respect to »; and =2
if and only if

f is negative over its 1th argument with respect to <; and »2
if and only if

f is positive over its tth argument with respect to »; and »3.

When we say that a relation p(z1, ..., 2,) is positive or negative over its tth argument with respect
to a single relation —«;, without mentioning a second relation <, we shall by convention take <, to be the
if-then connective. Thus in the above example we may simply say that < is negative over its first argument
and positive over its second argument, with respect to <preqd.

Every relation is both positive and negative over each of its arguments with respect to the equality
relation =, because the sentences

fz=y ifz=y
then if p(zy,..., %, .., Zn) and then if p(z1, .., ¥,) 2Zn)
then p(zy,..., ¥, ., Zn) then p(z1,...,Z, ..., Zn)

are valid. This is equivalent to the relational-substitutivity property of equality. Also, every function is both
positive and negative over each of its arguments with respect to = and =, because the sentences

fz=y
then f(z1,.. ¥ 2n) = f(z1,..,Z, o0y 25)

fz=y
then f(z1,...,Z,..,2zn) = f{z1, ., Yy -y 20) and

are valid. This is equivalent to the functional-substitutivity property of equality.

Every connective is both positive and negative over all its arguments with respect to =. For example,
the not connective is both positive and negative over its argument with respect to =, because both sentences

ifz=y
then if (noty) then (notz)

fz=y

then if (notz) then (noty) and

are valid.

When we say that a connective is positive or negative over its 1th argument, without mentioning any
relations <; and =3 at all, we shall by convention take both «; and =<3 to be the tf-then connective. Polarity
in this sense is close to its ordinary use in logic. The negation connective not is negative in its first (and
only) argument, because the sentence

if of 7 then y
then if {noty) then (notz)

e e o
=N

ey 3

e et
R S I St

';‘i te e

s

A

L el
LYY

3. RELATIONAL POLARITY 15

is valid. The conjunction connective and and the disjunction connective or are positive over both their
arguments. The implication connective tf-then is negative in its first argument, but positive in its second.

The equivalence connective = has no polarity in either argument. The conditional connective if-then-else
has no polarity in its first argument, but is positive in its second and third argument.

Note that a binary relation = is transitive if and only if it is negative with respect to = itself over its
first argument, because the polarity condition

if z <y
then iof y <z then <z

is equivalent to the definition of transitivity. Also, < is transitive if and only if it is positive with respect to
~ over its second argument.

We are now ready to define polarity for the subexpressions of a given expression. The definition is
inductive.

Definition (polarity of a subexpression)
Let <; and <2 be binary relations. Then

e An expression s 1s positive in 8 itself with respect to <; and =3 if <, implies ;.

e An expression s 1s negative tn s itself with respect to <; and = if <; implies »,.

Let f be an n-ary operator and ey, ez, ..., €, be expressions. Consider an occurrence of s in one
of the expressions e;. Then

o The occurrence of s is positive in f(ey,€a, ..., e,) with respect to <; and 2 if there
exists a binary relation «< such that

the polarity of the occurrence of s in e; with respect to <; and <
is the same as
the polarity of f over its tth argument with respect to < and =,.

o The occurrence of s is negative in f(e;, ez, ...,e,) with respect to <; and = if there
exists a binary relation =< such that

the polarity of the occurrence of s in e; with respect to <; and
is opposite to
the polarity of f over its :th argument with respect to < and =5.

Furthermore, if f has no polarity over its ith argument or if s has no polarity in e;, then s has
no polarity in f(ej, ez, ...,€e,). On the other hand, if s has both polarities in ¢; and f has some
polarity over its s argument, or if f has both polarities over its 1th argument and s has some polarity

in e, then s automatically has both polarities in f(ey, ez, ..., ep). r

Remark

For any binary relation ~<, any expression $§ is positive in ¢ itself with respect to < and < (because <
implies <). Similarly, s is negative in s with respect to < and ».

If f is positive over its 1th argument with recpect to <; and 3, then, for any expressions ¢, ez, ..., ¢y,
the occurrence of e, is positivein f(ey, ..., e, ..., e,) with respect to <; and <,. For take < to be <;. Then
the polarity of e, in e, itself is positive with respect to <, and «<,;. Also, f is positive over its 1th argument
with respect to <; and «<;. Because these two polarities are the same, e; is positive in f(ey, ..., e, ..., ¢en)

with respect to <; and ~;.

Iy

‘\.' '.' ..-

- e
N e

;j

w
E 18 3. RELATIONAL POLARITY
>
il Similarly, if f is negative over its ith argument, then e, is negative in f(ey, ..., ¢, - .., es), with respect
- d =.
‘)y to <, an 2 g
: We may indicate the polarity of a subexpression s by annotating it s*, s, or s*.
For example, suppose our theory includes the theories of sets and nonnegative integers. The occurrence
. of s in the sentence
o
. card(a”) <m
"
. is negative with respect to the subset relation C and the #f-then connective. For note that card is positive
< over its argument with respect to C and < and that < is negative over its first argument with respect to <
’ and if-then. Therefore, by our remark, we know that s is positive in card(s) with respect to C and < and
o that card(s) is negative in card(s) < m with respect to < and if-then. By the definition, taking ~, to be
i C, < to be <, and ~; to be tf-then, we conclude that s is negative in card(s) < m with respect to C and
¢ sf-then.
L
'\ When we say that an occurrence of a subexpression is positive or negative in a sentence with respect
to a single relation =, without mentioning a second relation —2, we shall again take <2 to be the sf-then
- connective. When we say that an occurrence of a subsentence is positive or negative in a sentence, without
& mentioning any relation at all, we shall again take both <; and =<3 to be if-then.
e
- It can be established from the definition that, for expressions s and t and binary relations —<; and =<5,
N an occurrence of ¢ is positive in ¢t with respect to <; and =
if and only if
- the occurrence of s is negative in ¢ with respect to »; and —;
- if and only if
N the occurrence of s is negative in t with respect to <, and »;
if and only if
K the occurrence of s is positive in ¢t with respect to »; and » 5.
This is analogous to our previous result concerning polarity for the argument of an operator.
2 i
Suppose an occurrence of s is positive [or negative] in t with respect to <, and —<;. Then if <; is a
N binary relation that implies <, then s is positive [or negative, respectively| in ¢ with respect to =<; and .
X Similarly, if <; implies a binary relation <3, then s is positive [or negative, respectively| in ¢ with respect
':- to <, and ';2.
: We can establish the following result:
N
> Lemma (polarity operator)
ﬂ
-’: Let <; and —«2 be binary relations, f be an n-ary operator, and e, ez, ..., e, be expressions. Con-
e sider an occurrence of s in one of the expressions ¢; such that s has some polarity in f(e;, ez, ..., €n)
with respect to <, and =;.
=,
v Then there exizts a binary relation — such that
- f is positive over its 1th argument with respect to < and =,
W and
- the pularity af the nccurrence of s in fley, ez, ..., €,} with respect to <, and =,
18 the same Az
. the prlan'y of the occurrence of s in e, with respect to <, and =, 4

PR

P e, S

el i Sl ke
«
PR AR

7l

Lo D e
AL AL S

x

SN W N .

e %
« A2 2

3

-

v et
S I R

als

P ,
o .
atetafall

R

fAAS A

-‘,
o
.-
? .
»*

3. RELATIONAL POLARITY 17
Proof
Consider the case in which the occurrence of s is positive in f(ey, ez, ..., e,) with respect to <, and

~2. According to the definition, this means that there exists a binary relation < such that

the polarity of the occurrence of s in e; with respect to <; and =
is the same as
the polarity of f over its 1th argument with respect to =< and .

If f is positive over its ith argument with respect to « and =2, then the occurrence of s is positive in
e; with respect to <, and =<, and we can simply take < to be .

On the other hand, if f is negative over its 7th argument with respect to < and -z, then the occurrence
of s is negative in e; with respect to <; and <. By previous remarks, this means that f is positive over its
1th argument with respect to the inverse relation > and =<2, and the occurrence of s is positive in e; with
respect to <, and the inverse relation ». Hence we can take < to be ».

The case in which s is negative in f(e1, ez, ..., ¢,) is treated similarly. 3

Polarities of subexpressions of subexpressions can be composed according to the following result.
Lemma (polarity composition)

Consider an occurrence of a subexpression r in an expression s and an occurrence of s in an
expression t. Then the polarity of the occurrence of r is positive [or negative| in ¢ with respect to
binary relations <; and —2 if and only if there exists a binary relation ~ such that

the polarity of the occurrence of r in s with respect to <; and —«
is the same as [or opposite to, respectively]

the polarity of the occurrence of s in ¢t with respect to < and <. r

For instance, if r is negative in s and s is negative in t then r is positive in £, with respect to the
appropriate binary relations. If r has both polarities in s and s has some polarity in ¢, then r has both
polarities in ¢t.

We can now establish the fundamental property of polarity.
Lemma (polarity replacement)
For any binary relations <; and < and expression e(z*, y~), the sentence

1f T <4y
then e(z*, y~) <z ey, z7)!

is valid. Here e(y*, z7)! is the result of replacing in e{z*, y~) precisely one positive occurrence
of r with y or negative occurrence of y with z (we assume that such an occurrence exists) where

the polarity is taken in e{z*, y~) with respect to <; and «,. r

Example

Suppose our theory includes the theories of lists and nonnegative integers. Take —«; to be the tail
relation 1 <,,,; y, which is true if

not{y =1') and z = tazl{y),

18 3. RELATIONAL POLARITY
that is, if y is nonempty and z is the list of all but the first element of y. Take <2 to be the predecessor
relation <p,.q4. Take e{z*, y7) to be the expression

length(z™) + length(zt),
where the function length(z) yields the number of elements in the list z.

Note that each occurrence of z is positive in length(z) + length(z) with respect to <4 and <p,cq, as
indicated by the annotations. For, each occurrence is positive in length(z) with respect to <¢qi and <pred,
and the plus function + is positive over either of its arguments with respect to <prea and <pred-

Therefore, according to the lemma, the sentence

f T <t Y
then length(z) + length(z) <pred length(y) + length(z)

is valid, because length(y) + length(z) is the result of replacing one positive occurrence of z in length(z) +
length(z) with y. Also, according to the lemma, the sentence

f T <eau y
then length(z) + length(z) <pred length(z) + length(y)

is valid, because length(z) + length(y) is the result of replacing one positive occurrence of z in length(z) +
{ength(z) with y.

On the other hand, the lemma does not allow us to conclude that

if 2 <t ¥
then length(z) + length{z) <preq length(y) + length{y)

is valid, because length(y) + length(y) is obtained by replacing two, not one, positive occurrences of z in

length(z) + length(z) with y. In fact, this third sentence is not valid. 3

We now prove the lemma.
Proof (polarity replacement lemma)
For any arbitrary binary relation =, suppose that
z - y.
We show that, for any expression e{(zt, y~), we have, for any binary relation =5,
elzt, y7) <2 ey, 7))L

The proof is by induction on the structure of e(z*, y~). In other words, we show the desired conclusion
for an arbitrary expression e{z*, y~), under the induction hypothesis that, for any proper subexpression
€(z*, y~) of e(z™, y~), we have, for any binary relation =2,

Elzt, y7) <2 (yt, z7) .

As in the statement of the lemma, 8{y*, z7)! is obtained from &(z ¥, y~) by replacing precisely one occurrence
of z or y, of suitable polarity with respect to «; and .

The proof distinguishes among several subcases.

Case: The expression e(z*, y~) is simply z

Then, because the replaced variable z is positive in z, with respect to «; and «;, we have (by the
definition of polarity) that «; implies ;.

N

"o -~

T L T T T T T e e e e ey j
N e e P RN L AT NG PR SN
SN N S I A a >, l’.“n{'-’f}.“n‘n’_‘-",-l"ﬂ--t

A A Wl owa el -

-
-
- 3. RELATIONAL POLARITY 19
N In this case, e(y™, z7)! is y, and we must show
L~ I <2Yy.
]
- But this follows from our supposition that z <, y, because <, implies 5.
i, ¢
b Case: The expression e(zt, y~) is simply y
X Then, because the replaced variable y is negative in y with respect to <; and —<, we have (by the
<. definition of polarity) that «; implies 5.
:: In this case, e{(yt, z7) is z, and we must show that
LY
“ y <2 z,
x or, equivalently, that
-
& Irgy.
3 2y
- But this follows from our supposition that z <; y, because —«; implies »5.
. Case: e(z*, y~) is of form f(ey,e2, ..., €,), where f is an n-ary operator
. The replaced occurrence of z [or y| must occur in one of the arguments e; of f. Because this occurrence
is positive [or negative, respectively] in f(e1, ez, ..., e,) with respect to <, and -2, we know (by the polarity
N operator lemma) that there exists a binary relation —« such that
f 13 positive over its 1th argument with resect to < and =<,
,-J‘: and
y the polarity of the replaced occurrence of z [or y| in e; with respect to <; and <
r i3 the same as
: the polarity of the replaced occurrence of z [or y| in f(e1, €2, - . .,¢€n), that is,
e{z™, y~), with respect to <; and ~,.
:. Let us therefore write ¢; a: ¢;(z%, y™).
-_ Because e;(z*, y~) is a proper subexpression of e(z*, y~), we can apply our induction hypothesis,
- taking €(z*, y~) to be ¢;(z*, y~) and =<2 to be ~, to conclude that
) ez, y7) <e(y®, z7)
)
. Therefore (by the definition of polarity of an operator, because f is positive over its ith argument with
"_ respect to < and <;), we have
", fler, .. ez, y~), ...,e,,) ~2 fler, o ei(yt, z7), ..., e,,),
that is,
.: €<I+, y_>"2 €<y+,.'£_)1,
- as we wanted to show. This completes the proof.
o The polarity replacement lemma allows us to replace precisely one occurrence of a variable. If we know
e more about the relation «;, we can establish stronger versions of the lemma. In particular, if we know that
R’ . o .
&% —~ 1s transitive, we can replace one or more occurrences of the variable.
.
" Lemma (transitive polarity replacement)
>
- e e e e . e

-
LR -

7 L B NS - 0 R
DEIFSINT LRSI Wt P VY .'..l).a"i“".a A

20 3. RELATIONAL POLARITY

+

For any binary relations <; and =< and expression e{z%, y~), where ~<; is transitive, the sentence

ifz<y
then e(z™, y~) <2 e{(y*, z7)"

is valid for every positive integer n. Here e{yt, 2™)" is the result of replacing in e{z™*, y~) precisely

n positive occurrences of r with y or negative occurrences of y with z, where the polarity is taken

in e{z*, y~) with respect to <; and ~3. 3

Note that we can replace occurrences of both z and y in the same expression; precisely n replacements
are made altogether. Also, the lemma requires that at least one replacement be made.

Example
Suppose our theory includes the theories of both lists and integers. Take e(z™, y~) to be the expression
e(z*t, y~): length(z*) + (length(z™) — length(y™)).

Take =<, to be the tail relation <;q;; {defined in a previous example} and —<; to be the less-than relation
<. Note that, with respect to <4 and <, both occurrences of z are positive and the occurrence of y is
negative in e(z*, y~); also < is transitive. According to the lemma, the following sentences {among others)
are valid: the sentence

f T <tait Y
then length(z) + (length(z) — length(y)) < length(y) + (length(y) — length(y)).

for which both occurrences of z in e{(z*, y~) have been replaced, and

f 2 <tant ¥
then length(z) + (length(z) — length(y)) < iength(z) + (length(y) — length(z)),

for which one occurrence of z and one of y in e{z*, y~) have been replaced.
On the other hand, the lemma does not allow us to conclude that

‘f T <tail Yy
then length(z) + (length(z) — length(y)) < length(z) + (length(z) — length(y)),

is valid, because no replacements of z or of y in e(zt, y~) have been replaced. In fact, this final sentence is
clearly not valid.

We now prove the lemma
Proof (transitive polarity replacement lemma)
We assume throughout that polarity is with respect to <; and ~<2. We suppose that
T <y

and show that

for every positive integer n. The proof is by induction on n.

Base Case: n -1

In this case, precisely one replacement is made. The desired result

+

elzt, y) =pelyt, z7)!

follows from the original polarity replacement lemma.

a® .t 7"
LI

L et and Aok bal and ois £ A ol aad nd and ok sl ek B0 B Mol Gl el o Sal snb sall sad sal ol ualh aalh mal salo ok saiainksok sok & vvg*v*-rvrﬁ

3. RELATIONAL POLARITY 21

Inductive Step:
For an arbitrary positive integer k, we assume inductively that
e(zt, y7) <z e(yt, z7)F
and show that
e(zt, y7) <2 e(yt, z7)KL

Observe that e{y*, z7)¥*! can be obtained from e(y*, z7)* by replacing precisely one positive occur-
rence of z with y or one negative occurrence of y with z. Therefore, by the original polarity replacement
lemma, we have

elyt, 27)F <a elyt, z7)FHL

Because our induction hypothesis is that e{zt, y~) =<2 e(y*, 7)*, and because we have assumed that
~2 18 transitive, we can conclude that

C(I+, y—) 2 €<y+, z_>k+1)

as we wanted to show.

If <, is transitive, the above lemma allows us to replace one or more occurrences of a variable. If «; is
both reflexive and transitive, the following lemma allows us to replace zero, one, or more occurrences.

Lemma (reflexive transitive polarity replacement)

For any binary relations <; and < and expression e{zt, y~), where —<2 is both reflexive and transitive,
the sentence

ifz <y
then e{zt, y~) <2 e(y*, z7)

is valid. Here e(yt, z7) is the result of replacing in e(z*, y~) certain positive occurrences of z with y and

certain negative occurrences of y with z, where polarity is taken in e{z*, y~) with respect to «, and <.

This lemma, as opposed to the transitive polarity replacement lemma, admits the possibility of replacing no
occurrences at all of z or y in e(2™, y™).

Example

Suppose our theory includes the theories of both finite sets and integers. Take e(zt, y~) to be the
expression

elzt, y) card(zt ~y7) —card(y” ~z%)
where z ~ y iz the difference between the sets z and y, that is, the set of elements of z that do not belong to
y. Take =, to be the subset relation € and ~; to be the weak less-than relation <. Note that, with respect

to C and <, both occurrences of r are positive and both occurrences of y are negative in e(z*, y~), as the
annotations indicate. Also, < is both transitive and reflexive.

Therefore, according to the lemma, the following sentences are valid: the sentence

f z0y
then card(z ~vy) - card{y~z) < card(u ~ z) - card(z ~y),

e - - - R R SR
PR R R S R R e T e S . e e T T T T
R W T T U NP S Ol TR A SREP I PSP BRI EP NS PP S0 I I RPN, V0, PV, V. P, PRVEPEIET S NPV,

T RSTR TR

'S
i3
8

Ay
:,‘.f\' '.}‘yl i

LR ek
L)

NEL N

[}
0y
b}

L By

YA

h T

[
.
A

%

L)
T 4
P

LSS

P XX
s

MTATENTE T ETE Te Ty RN NV NN IR NI ITW YV W - W TE T WU

22 3. RELATIONAL POLARITY

for which all occurrences of z and y in ¢(zt, y™) have been replaced, and the sentence

fzCy
then card(z ~y) — card{y ~ z) < card(z ~ y) ~ card(y ~ 1),

for which no occurrences of r and y in e(z¥, y~) have been replaced. Of course, other valid sentences can

be obtained by replacing some, but not all, of the occurrences of z and y in e(z*, y™). 4

The proof is straightforward.
Proof (reflexive transi-ive polarity-replacement lemma)

In the case in which no replacements are made, e{y*, z~) is identical to e(z*, y~), and the desired
result holds because we have supposed that <2 is reflexive. In the case in which one or more replacements are
made, the desired result follows from the transitive polarity replacement lemma, because we have supposed
that <5 is also transitive.

The following consequence of the polarity replacement lemma will be used most frequently:
Proposition (polarity replacement)

For any binary relation « and sentence P{z*, y~), the sentence

if 24y
then of P(z*, y~)
then P(yt, z7)

is valid. Here P(y*, z7) is the result of replacing in P(z*, y™) certain positive occurrences of
with y and certain negative occurrences of y with z, where polarity is taken in P(z*, y~) with

respect to <.
P J4

Recall that, when we refer to polarity in a sentence with respect to a single relation «, we mean polarity
with respect to <« and the if-then connective. The proposition allows us to replace occurrences of both z
and y in the same sentence and (trivially) admits the possibility that no replacements are made.

The proof is immediate.

Proof

Regarded as a relation, the if-then connective is reflexive and transitive. The replaced occurrences of
z and y are respectively positive and negative in P(z%, y~) with respect to < and if-then. Therefore the
proposition is simply an instance of the reflexive transitive polarity replacement lemma, taking <; to be =,

=2 to be if-then, and e(z*, y~) to be P(z™, y7). J 4

Example
Suppose our theory includes the theories of finite sets and integers. Take Pz, y~) to be the sentence
Plzt, y™): a<card(zt ~y~) and card(y” ~zt) <.

Take « to be the subset relation C. Note that, with respect to C, both occurrences of z are positive and

both occurrences of y are negative in P{z*, y~), as indicated by the annotations. Therefore, according to
the proposition, the following sentences are valid: the sentence

fzCy
then if a < card(z~y) and card(y~z)<b
then a < card{z ~ z) and card(y~y) <5,

Pl

pro e

AP
LA A WL SN

- -
N e d o WS §

-

4. NONCLAUSAL DEDUCTION 23

for which one occurrence of z and one occurrence of y in P(z*, y~) has been replaced, the sentence
Yy Yy P)

fzCy
then if a < card(z~y) and card(y~z) <b
then a < card{y~y) and card(y~y) < b,

for which both occurrences of z in P{z*, y~) have been replaced, and the sentence

fzCy
then if a < card(z~y) and card{y~z) <b
then a < card(y~z) and card(z~y) < b,

for which both occurrences of z and both occurrences of y in P(zt, y~) have been replaced. 3

We have now developed the mathematical results on relational polarity we need in order to introduce
the special-relations rules. But first, we introduce briskly our basic nonclausal deduction system.

4. NONCLAUSAL DEDUCTION

In this section we present a basic nonclausal deduction system, without any special-relations rules. This
system bears some resemblance to those of Murray [82] and Stickel [82]; it is based on the system of Manna
and Waldinger [80], but is simplified in several respects:

e The system presented here is a refutation system; it attempts to show that a given set of sentences
is unsatisfiable. (The original system operates on a tableau of assertions and goals, and attempts
to show that at least one of the goals follows from the assertions.)

e The system is presented with no program synthesis capabilities.
e The mathematical induction principle is omitted.

These simplifications have been made for purely expository purposes: the special-relations rules are
compatible with a tableau theorem prover and with the induction principle and are of great use in program
synthesis, our primary application.

THE DEDUCED SET

The deduction system we describe operates on a set, called the deduced set, of sentences in quantifier-
free first-order logic. We attempt to show that a given deduced set is unsatisfiable, i.e., that there is no
interpretation under which all the sentences are true.

Theorem proving in a first-order axiomatic theory can be reduced to showing the unsatisfiability of such
a set. In particular, to show that a sentence ¥ is valid in a theory whose axioms are A,, A2, ..., Ax, we
can

e Remove the quantifiers of the sentences A;, A2, ..., Ak, and not 7, by skolemization (see,
for example, Chang and Lee 73], Loveland [78], or Robinson [79]).

e Show the unsatisfiability of the resulting set of quantifier-free sentences.

We do not require that the sentences be in clausal form; indeed, they can use the full set of connectives of
propositional logic, including equivalence (=) and the conditional (if-then-else).

- v W,'—_’—.,'"","'"""F'J"“—""""T'T'F'V"?’F'HT

;Cx.}tt" 1-‘

N .
Tl f e

4
& s £

vy

A .,

24 4. NONCLAUSAL DEDUCTION

Example

Consider the theory of the strict partial ordering <, defined by the transstivity axiom

e 1750 Y]

and the srreflezivity axiom
(Vz)[not (z < z)].

Suppose we would like to show that in this theory the asymmetry property

(Vu) (V) [:‘f u=<v]

then notv <u

is valid. It suffices to show that the set of quantifier-free sentences

tfz<yand y<z if a<b
then z < z not (z < z) ¢ [then not (b < a)

is unsatisfiable.

If the truth symbol false belongs to the deduced set, the set is automatically unsatisfiable, because the
sentence false is not true under any interpretation.

Because the variables of the sentences in the deduced set are tacitly quantified universally, we can
systematically rename them without changing the unsatisfiability of the set; that is, the set is unsatisfiable
before the renaming if and only if it is unsatisfiable afterwards. Of course, we must replace every occurrence
of a variable in the sentence with the new variable, and we must be careful not to replace distinct variables
in the sentence with the same variable. The variables of the sentences in the deduced set may therefore be
standardized apart; in other words, we may rename the variables of the sentences so that no two of them
have variables in common.

For any sentence 7 in the deduced set and any substitution 6, we may add to the set the snstance 76
of ¥, without changing the unsatisfiability of the set. In particular, if the deduced set is unsatisfiable after
the addition of the new sentence, it was also unsatisfiable before. Note that in adding the new sentence ¥4,
we do not remove the original sentence ¥.

THE DEDUCTIVE PROCESS

In the deductive system we apply deduction rules, which add new sentences to the deduced set without
changing its unsatisfiability. Deduction rules are expressed as follows:

E/ N
7
This means that, if the given sentences #;, %, ..., 7, belong to the deduced set, the conclusion ¥ may
be added. Such a rule is said to be sound if the given sentences 7, %, ..., Fn imply the sentence 7. If a

deductive rule is sound, its application will preserve the unsatisfiability of the deduced set.

The deductive process terminates successfully if we introduce the truth symbol false into the deduced
set. Because deduction rules preserve unsatisfiability, and because a set of sentences containing false is
automatically unsatisfiable, this will imply that the original deduced set was also unsatisfiable.

We include two classes of deduction rules in the basic system:

Lo oA

. 4
AL RSPAN, &,

" o
L -".' [

- a
>

‘- A A b, Lty .l, R

O

DAEA

.

Do

"
P

« 4
-

N) ‘.‘\r'

L2 W Sl S N

=

PrALSESC L

—
K]
-

0

bl Bt Bob

4. NoNcLausAL DEDUCTION 25

e The transformation rules, which replace subsentences with equivalent sentences.
e The resolution rule, which performs a case analysis on the truth of matching subsentences.

These rules are described in this section. In later sections, we augment the basic system with two new classes
of rules:

o The replacement rules, which replace subexpressions with other expressions (not necessar-
ily equivalent or equal).

e The matching rules, which introduce new conditions to be proved that enable subexpres-
sions to be matched.

We first describe the transformation rules.

TRANSFORMATION RULES
The transformation rules replace subsentences of the sentences of our deduced set with propositionally
equivalent, simpler sentences. For instance, the transformation rule
P and true —» P

replaces a subsentence of form (P and true) with the corresponding sentence of form P. The simplified
sentence is then added to the deduced set. (Logically speaking, the original sentence remains in the deduced
set too, but, for efficiency of implementation, the original sentence need not be retained.)

We include a full set of such true-false transformation rules; e.g.,
not true — false
P or true — true
if P then false — not P.

These rules can eliminate from a sentence any occurrence of the truth symbols true and false as a proper
subsentence.

We also include such propositional simplification rules as
Pand P — P
notnot P — P.
These rules are not logically necessary, but are included for cosmetic purposes.

The soundness of the transformation rules is evident, because each produces a sentence equivalent to
the one to which it is applied.

Example

Suppose our deduced set contains the sentence

tf g(a) then false
E or
(not true) or (notq(a)).

(We omit parentheses when the structure of the sentence can be indicated by indenting.) This can be
transformed, by application of the rule

if P then false — not P,

T T O R R N RN UUR O T OO R e T TP QTR TR OO P SR

26 4. NONCLAUSAL DEDUCTION

into the sentence

not g{a)
(not true) or (notg(a)),

which may then be added to the deduced set.
The new sentence can be transformed in turn, by successive application of the rules
not true — false

false or P — P,
P or P — P,

into the sentence
not q(a).

We shall say that the original sentence ¥ reduces to (not q(a)) under transformation. J

Our original system (Manna and Waldinger [80]) included many more transformation rules; also, their
operation was more complex. In this system, the role of these more complex rules has been assumed by the
replacement rule of Section 5.

RESOLUTION RULE: GROUND VERSION

The resolution rule applies to two sentences of our set, and performs a case analysis on the truth of a
common subsentence. Instances of the sentences can be formed, if necessary, to create a common subsentence;
however, we first present the sround version of the rule, which does not form instances of these sentences.

Rule (resolution, ground version)

For any ground senterces P, ¥{P], and §[P], we have

7P|
gt
F|false] or G[true

o4

In other words, if F{P| and G[P| are sentences in our deduced set with a common subsentence P, we can
add to the set the sentence (F|false] or G|true]) obtained by replacing every occurrence of P in F|P| with
faise, replacing every occurrence of P in G[P| with true, and taking the disjunction of the results. We shall
assume that F|P] and G[P| have at least one occurrence each of the subsentence ©. We do not require that

F1P| and §[P] be distinct sentences.

Because the resolution rule introduces new occurrences of the truth symbols true and false, it is always
possible to simplify the resulting sentence immediutely afterwards by application of the appropriate true-false
rules. These subsequent transformations will sometimes be regarded as part of the resolution rule itself.

PR,

PR R §

Dl
«'e'sts

LY

- e
g i Y

.-

-

P

L ol ol A all ik ath e d SSA gtl i GRL R |

4. NoNcLAUSAL DEDUCTION 27

Example

Suppose our deduced set contains the sentences

7 if q(a) then

and

G (notM) or (not g(a)).

These sentences have a common subsentence p(a, b), indicated by the surrounding boxes. By application of
the resolution rule, we may replace every occurrence of p(a, b) in ¥ with false, replace every occurrence of
p(a, b) in G with true, and take the disjunction of the result, obtaining the sentence

if q(a) then false
or
(not true) or (not gq(a)),

which (as we have seen in a previous example) reduces under transformation to
rot g{a).

This sentence may be added to the deduced set. a

Let us show that the resolution rule is sound, and hence that it preserves the unsatisfiability of the
deduced set.

Justification (resolution rule, ground version)

We must show that the given sentences 7[P] and §[P] imply the newly deduced sentence (F{faise] or

Gltrue]). Suppose that 7[P] and G[P] are true; we would like to show that then (7[false] or G[true)) is true.
We show that one of the two disjuncts, F|false] or §|true], is true.

In the case in which the common subsentence P is false, we know (by the value property, because P
and false have the same truth value and F[P] is true) that the first of the disjuncts, #[false], is true.

Similarly, in the case in which the common subsentence P is true, we know (by the value property again,
because P and true have the same truth value and G[P] is true) that the second of the disjuncts, §|truel, is
true.

We have established the soundness of the ground version of the resolution rule when applied to ground
sentences, which contain no variables. We require the sentences to be ground because the justification
depends on the value property, which holds only for ground sentences. We can actually apply the ground
version of the rule to sentences with variables; the soundnes of such applications follows from the justification
for the general version of the rule, which we present later.

We now discuss an important strategy for controlling the resolution rule.

THE POLARITY STRATEGY

Murray's [82] polarity strategy allows us to consider only those applications of the resolution rule under
which at least one occurrence of P is positive (or of no polarity) in F{P]| and at least one occurrence of F is
negative (or of no polarity) in G| P]. In other words, not all the subsentences that are replaced with faise are
negative and not all the subsentences that are replaced with true are positive. This strategy blocks many
useless applications of the rule and rarely interferes with a reasonable step.

A \ -
. -.:_b
1 _\'
'h. .
s.'!_’
LN
T
;5333 28 4. NONCLAUSAL DEDUCTION
LY
%
)
R
v The intuitive rationale for the polarity strategy is that it is our goal to deduce the sentence false, which
4+ is more false than any other sentence. By replacing positive sentences with false and negative sentences with
o y rep P g
‘-;\-‘. true, we are moving in the right direction, making the entire sentence more false. !
o :
AT, !
B |
S !
- Example '
& .
,'-_. Suppose our deduced set contains the sentences
-("..t-\' |
- ’
2 7 or a0 |
oo !
WY and '
..._.‘ §: i then g(b).
< N,
":, :' These sentences have occurrences of a common subsentence p(a), of positive and negative polarity, respec-
.f::c: tively, as indicated by the annotation. By application of the resolution rule, we obtain the sentence
Ll
false or g(b)
> or
L .
SRS if true then q(b),
BN
- . .
e which reduces to g(b) under transformation.

Let us reverse the roles of our sentences.
AN F: if[pla)]| then q(b)
L .\
o g: or q(b).

. The sentences still have occurrences of a common subsentence p(a). However, it is in violation of the polarity
strategy to apply the rule for the sentences in this order, because now the occurrence of p(a) is negative in

-

Lo’y 7, i.e., it is not positive or of no polarity. Also, the polarity of p(a) is positive in §. If we insist on applying
‘ﬂ}‘? the resolution rule anyway, we obtain the sentence
.‘ .."i A
:) if false then q(b)

- or
o7 true or q(b),

W\

»'j-,j_-i‘ which reduces to true under transformation. Although it does no harm to add the sentence true to our

.'x." deduced set, it is of no use in establishing the unsatisfiability of the set.

v:\

- There are two other legal applications of the resolution rule to the same two sentences, obtained by
% taking the common subsentence to be g(b) rather than p(a). Both of these applications of the rule lead us
‘-::*-: to obtain the redundant sentence true, and both are in violation of the polarity strategy. a
R
' \w":q
| S‘I, g
.' :',e
- RESOLUTION RULE: GENERAL VERSION
;.."'.:

The general version of the rule allows us to instantiate the variables of the given sentences as necessary
to create common subsentences. It is expressed as follows:

Cal ol A A

)
l.

Ay

4. NONCLAUSAL DEDUCTION 29

Rule (resolution, general version)

For any sentences P, P, |P|, and g[ﬁ], where ¥ and § are standardized apart, i.e., they have no
variables in common, we have

F1P]
i
F6|false] or GO|true

where 6 is a most-general unifier of P and .
More precisely,
e 7 has one or more subsentences P, Py, Pz,
e G has one or more subsentences PP, % ...
e f# is a most general unifier of P, Py, P2, ..., and P, P, %, ...;hence
Po=Po=Po=...=Po=PFo=FRo=....

e The conclusion of the rule is obtained by replacing all occurrences of P8 in #6 with false,
replacing all occurrences of P8 (that is, Pf) in Gf with true, and taking the disjunction
of the results

In other words, we apply the ground version of the rule to ¥8 and §6, taking P8 as the common
subsentence.

The rule requires that the sentences 7 and § be standardized apart, i.e., that they have no variables
in common. This may be achieved by renaming the variables of the sentences as necessary. If both are the
same sentence, we rename the variables of one copy of the sentence.

Let us show that the general version of the rule is sound.
Justification (resolution rule, general version):

The soundness of the general version of the rule follows from the soundness of its ground version. We
show that the sentences ¥ and G imply the sentence (F0|false] or G6[true]).

We suppose that [under a given interpretation| the sentences ¥ and § are true and show that (76|false]
or GB|true]) is also true. It suffices (by the definition of truth for a nonground sentence) to show that any
ground instance of (F8{false|] or G6[true]) is true.

Because ¥ and § are true, we know (by the instantiation lemma) that 76 and G6 are true and hence
(by the definition of truth for a nonground sentence) that every ground instance of 78 and G6 is true. But
any ground instance of (#8{false] or G8truc') is the result of applying the ground version of the rule to the

corresponding ground instance of 76 and G6; therefore it is also true. a

The general version of the rule includes the ground version as a special case, in which the most-general
unifier # is the empty substitution { }.

The following illustration of the general resolution rule is extracted from the derivation of a binury-search
real-number square-root program.

LA aad B e ol Sad Mad Al taa iod ok e AR AR A A el ek e fnk Gl e A At An" b tat haioda aRacohd MA Mas i ood aia aia 4od o ginaog o baiea g o0 |

380 4. NONCLAUSAL DEDUCTION

Example !

In the theory of the nonnegative real numbers, suppose our deduced set contains the sentence

+
7 n.ot(y2§a and not| (y+¢€)?<a),

where y is a variable and a and ¢ are constants. (The sentence is negated because it is deduced from the
negation of the original theorem.)

We are about to apply the resolution rule to this sentence and itself. Therefore let us produce another
copy of the sentence and standardize the two sentences apart; i.e., we rename the variable of the second

sentence
§: not (_ and not ((§+ €)? < a)).

The boxed subsentences
P: (y+e?<a

and
P g <a

are unifiable, with most-general unifier
6: {§—y+e}

To apply the rule, we replace all occurrences of P8 in 7§ with false, replace all occurrences of P4 in G6 with
true, and take the disjunction of the results, obtaining

not (y?* < a and not false)
or
not (true and not (((y +€) + €)% < a)).

This sentence reduces under transformation to

not(y2 <a) or ((y+e€)+ 6)2 < a.

Py

The above application of the rule is in accordance with the polarity strategy, because the boxed sub-
sentence P is positive in 7 and the boxed subsentence 7 is negative in §.

. .'\,‘ ;

]

g

. |

The resolution rule presented here is an extension of the rule of Robinson [65] to the nonclausal case.
Robinson’s rule applies to clauses of the form

F: Por ¥
iy G: (not ﬁ) or G',

IO
. -
e e 0
) :

where P and 7 are unifiable propositions, with most-general unifier §, and 7' and §' are themselves clauses.
Robinson’s rule deduces the new sentence

7'5 or 9'9.
The resolution rule presented here deduces, from the same sentences ¥ and G, the new sentence

false or F'8
or
(not true) or G'9.

-~

This sentence reduces under transformationto (¥'6 or §'4), the same sentence deduced by Robinson’s version
of the rule.

hkAdaRte Rl A il had ah Sad Ind it Sad S h S A e RS AC A At SRA A% A Bie abh Al i all ahdl ahAPahSt oo alts 008 4o Aoy il o g

5. THE RELATION REPLACEMENT RULE 31

Nonclausal resolution was developed independently by Manna and Waldinger [80] and Murray [82]. The
resolution and transformation rules together have been shown by Murray to provide a complete system for
first-order logic. An implementation of a nonclausal resolution theorem prover by Stickel {82] employs a
connection graph strategy.

5. THE RELATION REPLACEMENT RULE

. We now begin to extend our nonclausal deduction system to give special treatment to a binary relation
. ~. The two new rules of the extension allow us to build into the system instances of the polarity replace-
ment proposition, just as the paramodulation and E-resolution rules allow us to build in instances of the
substitutivity of equality.

Recall that, according to the polarity replacement proposition, for any sentence P(z*, y~) and binary
relation —«, the sentence

if z <y
then if P{z*, y~) then P(y*, z7)

is valid.
o If we could add this sentence to our deduced set for each relevant sentence P(zt, y~), we could achieve a
P considerable abbreviation of the proof, at the cost of a dramatic explosion of the search space. The extended

system will behave as if the sentences were present, achieving the same abbreviation of the proof and, at the
same time, collapsing rather than exploding the search space.

We begin with the relation replacement rule, which is our generalization of the paramodulation rule.

THE GROUND VERSION

With respect to a given relation =, the rule allows us to replace subexpression occurrences with larger or
smaller expressions, depending on their polarity. The ground version of the rule which applies to sentences
with no variables, is as follows:

Rule (relation replacement, ground version)

For any binary relation <, ground expressions s and t, and ground sentences F[s <« t]and G{s*, t7),
we have

Fls =t]
G(s*, t7)

-

Flfalse) or G{tT, s7).

Here G(t*, s7) is obtained from G{s*, t~) by replacing certain positive occurrences of s with ¢
and replacing certain negative occurrences of ¢t with s, where polarity is taken in G(s™, ¢t~) with

respect to —.

In other words, if F|s <« t] and §(s™,t”) are sentences in our ded.ced set, we can add to the set the sentence

(Flfalse! or G(t*, s7)).

For a particular relation «, we shall refer to this rule a« the <-replacement rule: thus, e have a «<-
replacement rule, a <-replacement rule, and so forth. Although the rule allows us to replace occurrences in

e .A.-.h "- "- ...V"-‘.: “-;.-’- '.-7 _»~ -~ ~<. .) '.. --< “' --. B . . b“ h‘- v.- -‘A -“' I.‘ L"
Nt T T T A T e e St c -
PP SFARIENFIE SERPIO IE AP N IERP AT SPIPIS DF AT NP DA T DI S

et .
« L. A

SRR RAT At P et Bat A28 Sk Ak Aet ld Aot BB 8.4 & 4°80 &AL A ‘S 4y |

A

- E‘ - - -

nE
’ f\.-t'.
P
MO
R
g 32 5. TH: RELATION REPLACEMENT RULE
f\‘
) G(s*, t™) of both expressions s and t at the same time, it is typically applied to replace occurrences of one or
- the other expression, but not both. Subsequent application of transformation rules, to remove occurrences
'_.‘;' of the truth symbols true and felse, may be regarded as part of the relation replacement rule itself.
.h":: %
- There is a polarity strategy for the relation replacement rule, which allows us to apply the rule only if
gy some occurrence of s < t is positive {or of no polarity) in F[s < ¢t].
S5 Naturally we may also require that some occurrence of s or ¢ is actually replaced; otherwise, G(t*, s7)
Rhaly is identical to G{s*, t™), and the sentence we obtain is (F[false] or G(s™, t)); this is weaker than the
1&;::. sentence G(s*, t7), which was already in the deduced set.
X o
"!g‘ . In illustrating the rule we draw boxes around the matching occurrences of s and ¢.
o
: Vo Example
i ~.::-.' .
e In the theory of the nonnegative integers, suppose our deduced set contains the sentences
e .
+ . V()
Sy © " then (B<t)+
LN
::-f_'\ and
b G: s<[F]?
£ .
A Note that the boxed occurrence of s in § is positive with respect to the less-than relation <. Therefore we
e can apply the <-replacement rule to replace the occurrence of s in G with ¢, to deduce
ly th pl t rule to repl h f th t, to ded
AN
o i pls)
R or 8 < t2,
;.“-. then false
1 5. .
) which reduces under transformation to
A 2
:}.:. (notp(s)) or s < t2
[SR% The above application of the rule is in accordance with the polarity strategy, because the occurrence of
p o s < t is positive in 7. Note that not every occurrence of s in § was replaced in applying the rule.
e)
. In a system without the relation replacement rule, we could have deduced the same conclusion by
Py applying the resolution rule in sequence to ¥, G, the monotonicity property
SR
\::\: if z<y
SAY 5 2
O then z° < y*,
n.::\:
and the transitivity property
o
R
N <y
Wi then of y < z
\:.:1 then z < z.
-
oy The rule allows us to draw the conclusion even if the monotonicity and transitivity properties are not in our
e deduced set.
YR
LS
CAE N
N
b e The following illustration of the rule is extracted from the derivation of a program to find the maximum
. .
.: element of a list of numbers.

A N
. b

~

SRS .‘.'n“ A ‘\'..-'N'i'\" X
W '(‘.\f 'c NSy,

St at il Sak bl Bog ag 2ad Aol 208 tod s Sed aad Sad b aaf aal taf cob S8 tal Sl ind Sof ol dicank Baf Bab ek ualh Sofl ginl Sadh Faull ol Sn L el Sell Al thl Mab Ml sl S sk Sl aalh Shl el Sl oo |

5. THE RELATION REPLACEMENT RULE 33

Example

In a theory of lists of numbers (integers, say), suppose our deduced set contains the sentences

not Y g(m) ="
7.

g -

then not (m <)+
t=]

and

if g(h) €t]

§: not [then g(h) 5'

Note that the boxed occurrence of h in § is negative with respect to <. Therefore we can apply the
<-replacement rule to replace the occurrence of h in § with m, to deduce

if g(m) = h
not [thcn not false
or

e=[]

or

not [gli(hg)(f)ts m)] .

This sentence reduces under true-false transformation to

=]
ot |/ a(h) €t]
[then g(R) < m|

The above application of the rule is in accordance with the polarity strategy, because the subsentence

m < h is positive in ¥. 4

Let us now establish the soundness of the rule.

Justification (relation replacement, ground version)

We show that the given sentences 7[s < t] and §(s*, t~) imply the conclusion (F{false] or G(t*, s7)).
We distinguish between two cases and show that in each case one of the two disjuncts, ¥|false] or G(t*, s7),
1s true.

In the case in which the subsentence s < t is false, we know (by the value property, because s <t and
false have the same truth value and F[s < t] is true) that the first of the disjuncts, ¥{false], is true.

In the case in which = <t is true, we know (by the polarity replacement proposition, because G(s*, t™)
is true) that the second of the disjuncts, G(t*, s7), is true.

As with the resolution rule, we have established the soundness of the ground version of the relation
replacement rule when applied to sentences with no variables. We will actually apply the ground version of
the rule to sentences with variables. The above justification does not extend to this case, however, because
the value property only holds for ground sentences. Such applications are an instance of the following general
version of the rule.

et e R LA A S A A R AR ML S a4t ol A b i * b Sl " R Rt b v o e® R et Sab Ba¥ Gat Bl Sl Soh flak ooy o0 Bk & A Sk £.0 A8 @ 4]

34 5. THE RELATION REPLACEMENT RULE

THE GENERAL VERSION

We are now ready to give the general version of the rule, which applies to sentences with variables and
allows us to instantiate the variables as necessary to create common subexpressions.

Rule (relation replacement, general version)

For any binary relation =, expressions s, ¢, 5, and t, and sentences Fls < ¢] and (5%, 'tv‘), where
7 and G are standardized apart, we have

Fls <t
g+
F0|false] or GO(tOTt,s67)

where 6 is a simultaneous, most-general unifier of s,% and of ¢, L.
More precisely,

e 7 has one or more subsentences s < t, s; < ty, 92 ~<ta,

e G has one or more subexpressions §,3;,32, ... and t,21,¢2,
e 6 is a simultaneous most-general unifier of s,3,,82, ..., §,8,32, ... and of t,¢;,t3, ...,
?,2'1,?2, ...; hence
B =9=9,8= ... =F8=5F8=30= ...
and
th=t6=t0= ... =th=t,0=t20=....

o The conclusion of the rule is obtained by replacing all occurrences of (s < t)# in 76 with
false, replacing certain positive occurrences of s§ in G6 with té, replacing certain negative
occurrences of t in G6 with s, and taking the disjunction of the two results. Here polarity
is in §6 with respect to —.

In other words, we apply the ground version of the rule to 76 and §6. r

The justification of the general version of the rule, which we omit, is straightforward now that the
soundness of the ground version has been established. The proof is analogous to the proof of the general
version of the resolution rule. The polarity strategy for this rule allows us to assume that at least one
occurrence of the subsentence (s < t)§ is positive or of no polarity in 76,

Example
In the theery of sets, suppose our deduced set contains the sentences

o/ plz)
then ((I,,a) E b y) .
and

i (e h(u a) |t ~ v) or q(u,v),

-
- - ,_,4

where ~ 1s the set difference function.

P o 1,‘.-'1..' L ol S JL

{
L]

LT B L R A A

L Rt o B G S o e iy D gk L hlds e guich auiin ival ol aw B et sy et anide well - ud h=a sy N - Cals Sl ol s * e L ¥ o e b e Y PR oA ® e S S giase dv o Jiait dhas Bad dind el e ek

5. THE RELATION REPLACEMENT RULE 35

Note that
e ¥ contains the {positive] subsentences h(z,a) C b and h(b,y) C =z.

e The boxed subterms h(z,a), h{b,y), and kh{u,a) and the boxed subterms b and z are
simultaneously unifiable, with most-general unifier

: {z—b, u—b, y—al}
o The boxed occurrence of h(u, a) is positive in § with respect to C.

Therefore we can apply the C-replacement rule, replacing all occurrences of h(b,a) C b in F6 with false,
replacing the occurrence of h(b,a) in G8 with b, and taking the disjunction of the results, to obtain

if p(b)
then false or false
or

(c€b~v) or ¢lb,v).
This sentence reduces urder transformation to
(notp(b)) or (c€b~v) or q(b,v).

The above application of the rule is in accordance with the polarity strategy. P

Use of the relation replacement rule allows a dramatic abbreviation of many proofs. For this reason
and because the rule enables us to eliminate troublesome axioms from the deduced set, the search space
1s constricted. We have not established completeness results for the rule; judging from the corresponding
theorem for paramodulation {Brand [75]), we expect such results te be difficult.

SPECIAL CASE: THE EQUALITY REPLACEMENT RULE

The most important instance of the relation replacement rule is obtained by taking the relation —« to
be the equality relation =. This special case of the rule, which allows us to replace equals with equals, is a
nonclausal version of the paramodulation rule. It may be expressed as follows:

Rule (equality replacement)

For any terms s, t, 3, and ¢, and sentences Fls = t| and G(5, t), where ¥ and G are standardized
apart, we have

715 =1
63, 1)
F6|false] or G6(t8,s6)

where # is a simultaneous, most-general unifier of s, § and of ¢, ¢t. a

The notation is analogous to that for the general relation-replacement rule. We do not need to restrict
the polarity of the replaced subterms sf and tf in G, because any term has both polarities with respect to
the equality relation. The polarity strategy is the same as before.

The following illustration of the equality replacement rule is extracted from the derivation of an integer
quotient program.

T AT AT e e Tt RN TR R T L T LR e L e N e i N AT TN T e AT e T TS
B A I S R By .. AT N A I T T I A N AN 90 AN S N
A N o . -"\\ N N e \g A A LA AN -_.-\'.\."‘ A .-

i - 4 (A4 A af L ot tadd v » - B i) e M 4 e S0 0 .

Ey

«
1.7«
4

""
A.‘ .l
A Yy Yy

r‘;':;-l ‘y
f.n' .

TR

o
TENAE YA

36 5. THE RELATION REPLACEMENT RULE

Example
In the theory of the nonnegative integers, suppose our deduced set contains the sentences
7o (@al-or
and
G: not(Sn and (z+1)-d > n).
(In the derivation, ¥ is an axiom and § is deduced from the negation of the theorem.)
Note that
e 7 contains the {positive) subsentence 0-u = 0.
e The boxed subterms 0 u and z - d are unifiable, with most-general unifier
§: {z+0, u+—d}

Therefore we can apply the =-replacement rule, replacing all occurrences of 0 -d = 0 in F6 with false,
replacing the occurrence of 0-d in G# with 0, and taking the disjunction of the results, to deduce

false
or
not (0 <n and (0+1)-d>n).

This sentence reduces under true-false transformation to

not (0 < n and (0+1)-d>n). 3

SPECIAL CASE: THE EQUIVALENCE REPLACEMENT RULE

Another important instance of the relation replacement rule is obtained by taking the relation = to be
the equivalence connective =. This is possible only because we regard connectives as relations over truth
values. The rule is analogous to the equality replacement rule.

Rule (equivalence replacement rule)

For any sentences S, T, §, ¥, #[$ = T), and G(S, T), where 7 and § are standardized apart, we have

FI§=T]
6(3,7)

F6|false] or GO(TH, S6)

where 6 is a simultaneous, most-general unifier of §, § and of T, 7. a

As in the equality replacement rule, we do not need to restrict the polarities of the replaced subsentences
$6 and T in G4, because any subsentence has both polarities with respect to the equivalence relation. The
polarity strategy is the same as for the general relation-replacement rule.

The following illustration of the equivalence replacement rule (or =-replacement rule) is drawn from the
derivation of a program to find the maximum of a list of numbers (e.g., integers or reals).

s D

al kel el i)

[Al et al &

6. THE RELATION-MATCHING RULE 37

Example

In the theory of lists of (say) integers, suppose our deduced set contains the sentences
if not (2= { })

then [=lu=h or uét]]+

and

z€s and

§: not ['f}

then z > g(z)

(In the derivation, ¥ is an axiom and § is deduced from the negation of the theorem.)

Note that the boxed subsentences u € z and g(z) € s are unifiable, with most-general unifier
6: {u+ gz}, z s}
Therefore we can apply the =-replacement rule, replacing the occurrence of g(z) € s in g9 with
g(z) =1 or g(z) €,
to deduce
[if not (s = { })]

then false
or

z€s and

not [if [9(z) = h or g(z) € t]]

then z > g(z)

This sentence reduces under transformation to

s={}
z€s and
not [if [9(2) = h or g(2) etl]

then z > g(z)

6. THE RELATION-MATCHING RULE

We are about to introduce not a rule in itself but an augmentation of the other rules. The resolution and
relation replacement rules draw a conclusior when one subexpression in our proof unifies with another. The
relation-matching augmentation allows these rules to apply even if the two expressions fail to unify, provided

that certain conditions can be introduced into the conclusion. We begin by describing the augmentation of
the resolution rule.

RESOLUTION WITH RELATION MATCHING: GROUND VERSION

This rule is our generalization of the E-resolution rule. The ground version of the rule is as follows:

13
E]

X
.

[y
.

A

RS
a~ 'D—

38 6. THE RELATION-MATCHING RULE

Rule (resolution with relation matching, ground version)

For any binary relation =, ground expressions s and ¢, and ground sentences P{s*, t¥, s, t7),
F[P(s*, s*, t7, t7)], and G[P(tt, t*, s, s7)] we have

F[P(st, st 7, t7)]
Pttt s, s7)]

if s <t
then F|[false] or G[true]

Here

e P(st,tt, s7, t7) is an arbitrary sentence, called the intermediate sentence, which may
have positive and negative occurrences of s and ¢; polarity is taken with respect to <.

o The sentence ¥ may have several distinct subsentences P(s¥, s*, t~, t~), each obtained
from the intermediate sentence P(s™, t*, s~, t~) by replacing certain of the positive
occurrences of ¢ with s and certain of the negative occurrences of s with ¢.

e Similarly, § may have several distinct subsentences P(t*, t*, 3™, s7), each obtained from
the intermediate sentence by replacing certain of the positive occurrences of s with ¢t and
certain of the negative occurrences of ¢ with s.

For a particular relation <, we shall refer to the above as the resolution rule with <-matching.

Note that if all the subsentences P(st, s*, t=, t=) and P(t*, t*, s, s~) were identical, we could
apply the original resolution rule, obtaining the conclusion (.7[false] or g[true}). The augmented rule allows
us to derive the same conclusion rule even if the subsentences P do not match exactly, provided that the
mismatches occur between terms s and ¢ of restricted polarity and that the condition s < ¢ is introduced.

The polarity strategy allows us to apply the rule only if an occurrence of one of the sentences P(s*,s*, ¢t~ t7)

is positive or of no polarity in ¥ and if an occurrence of one of the sentences P(t*, t*, s~, s7) is negative
or of no polarity in §.

Note that the intermediate sentence P(s*, t*, s~ t~) does not necessarily appear in either of the
sentences of the deduced set and that the rule does not stipulate how to find such a sentence. We shall
discuss the choice of the intermediate sentence in the subsection Selection of Application Parameters.

Example

In the theory of lists, suppose that our deduced set includes the sentences

F: p(l) or|ce(tail(e))” ‘
if then q(£).

The two boxed subsentences are not identical. Let us take our intermediate sentence to be one of them,
P : ¢ € tail(£). The subterm st : tatl(£) is positive in ¢ € tail(€) with respect to the proper-sublist relation
<1ist- The other boxed subsentence ¢ € £ can be obtained by replacing this subterm with t* : £. Therefore
we can apply the resolution rule with <;,,.-matching vo obtain

and

‘lf tazl(l) 5“" £
then p(€) or false
or
if true then q(¢),

TN TR
' ‘:&n {A\.‘l-).- 'x/. - -

R

A A+ &

PP el T S el e 3

ol Bl Jn: ok A an ol pol dad ko o Bac ot nd bk ateh- ohch ahe ads At st ta-h 8 o htie fh salh el Bel ek il el sal sl talbuc Ao e Aie e Al e bl Sth R dld ol Ul Aol S S e R R el |

6. THE RELATION-MATCHING RULE 39

which reduces under transformation to

if tail(l) <ot £

then p(€) or ¢(¢). a

We shall give some more complex examples of the application of the rule after we establish its soundness.

Justification (resolution with relation matching, ground version)

Note that (by the invertibility of partial replacement) the intermediate sentence P (s*, t*, s=, t7) can
be obtained from any of the subsentences P(s*, s*, t~, t~) of 7 by replacing certain positive occurrences
of s with ¢ and certain negative occurrences of t with s, where polarity is taken in P with respect to —.
Therefore (by the polarity replacement proposition) each of the sentences

if s %t
(1) then of P(st, st,t™,t7)
then P(st, t*, s7,t7)

is valid.
Also any of the subsentences P(t*, t*, 5=, 37) of § can be obtained from the intermediate sentence

P(s*, tT, s7, t~) by replacing certain positive occurrences of s with ¢ and certain negative occurrences of
t with s. Therefore (by the polarity replacement proposition again) each of the sentences

if st
(1) then if P(st,tt, s™,¢t7)
then P(t*,t*, s, s7)

1s valid.

Suppose that the sentences F[P(s*, s*, t~, t~)] and G[P(t*, t, s, 37)] are true and that s < ¢.
We would like to show that then (F{false] or G[true]) is true. The proof distinguishes between two cases,

depending on whether the intermediate sentence P {s*, t*, s~, t~) is false or true. We show that in each
case one of the two disjuncts, ¥|false] or G[true], is true.

Case: P(st, tt, s™, t7) is false

Then by our previous conclusion (), because s % ¢, we know each of the subsentences P(s*, s*,t~, ™)
of ¥ is false. Because 7[P(s+, st t, t')] is true and because the subsentences P(st, s*, t™, t~) and
false all have the same truth value, we know (by the value property) that the first disjunct, 7(false], is true.

Case: P(st,t%, s~ t7) is true

Then by our previous conclusion (1), because s < ¢, we know each of the sentences P{t*, t*, s, s7)
is true. Because Q{P(t"’, tt, 8", 8")] is true and because P(t*, t*, s7, s7) and true have the same truth

value, we know (by the value property again) that the second disjunct, G|true], is true. a

The resolution rule with relation matching must be regulated with strict heuristic controls; if the controls
are too permissive, any two subsentences may be matched.

The following example is a bit contrived but illustrates some of the power of the rule.

1

TS ot R VUL Y VY R R R Tl N I e Y R N AL S L ST T AN TTANE E GRR NN Ay N GV SRS Y 3. §
o W A L " Y CRS AR CRUVPL PR LR G RN P WL I € & L i i e
v s M oy ..'Q.!':.. "y '\(N - O, =) VI '™ ~ A Y e " o

Sl 20 \ i ., () ' s Il At s

. -
]
A

RN

r P oy
ER2 R

A

ol g

‘2 f

oV T 4

be 2)
l.‘

- 1.-

2
-y &.’
/‘}_e'

o

'I ‘&

v

.

A

2

~~

[P S

40 6. THE RELATION-MATCHING RULE

Example

In the theory of sets, suppose our deduced set includes the two sentences

fee((sT~a)ub~tT)u(tr ~c)u(d~tT)) |*
¥ or
lce((s+~a)U(b~a')U(s+~c)u(d~t')) I'*’

and

lee((tt ~a)u(b~s")U(tt ~c)uU(d~tT)) |~
g: not and
{ee((a"'~a)U(b~s')U(t+~c)U(d~a"))]'

Let us take our intermediate sentence to be
P: e€ ((s+ ~a)u(b~sT)u(tt ~c)U(d~t")).

The occurrences of s and ¢ have been annotated with their polarities in P with respect to the proper-subset
relation C. Note that each of the boxed sentences in ¥ may be obtained from P by replacing certain of the
positive occurrences of t with s and certain of the negative occurrences of s with t. Also, each of the boxed
subsentences of § may be obtained from P by replacing certain of the positive occurrences of s with ¢ and
certain of the negative occurrences of ¢t with s. Therefore we can apply the resolution rule with C-matching
to obtain

if sCt
then false or false
or
not (true and true),

which reduces under transformation to the sentence

not (s C t}. J

Note that this conclusion, obtained by a single application of the rule, is not immediately evident to the
human reader.

SPECIAL CASE: RESOLUTION WITH EQUALITY MATCHING

In the case in which the relation « is taken to be the equaliy relation =, the resolution rule with
relation matching reduces to a nonclausal variant of the E-resolution rule. It may be expressed (in the
ground version)} as follows:

Rule (resolution with equality matching)
For any terms s and ¢ and sentences P(s,t,s,t), 7[P(3,s,t, t,)], and Q[P(t,t,s, 3)], we have
F[P(s,s,t,t)]
G[P(t,t,s,9)]

ifs=t
then F|[false] or G|true].

o4

R e B e Bk i Bedr SR A s 2D s hma s g Al Al A d s fed .8 Aok Aol St et Ak dou-Ral o don Bt ek i sir Bar Rk et dat fad e diat St el Saf lei oiRioRai ANl G

6. THE RELATION-MATCHING RULE 41

Here P(s,s,t,t) and P(t,t, s, s) are obtained from P(s,¢,s,t) by replacing certain occurrences of s with ¢ and
certain occurrences of ¢t with s. In other words, all the subsentences P (s, s, t,t) and P(t,t, s, s) are identical
except that one may have occurrences of s where another has occurrences of t. We do not need to restrict
the polarities, because every subterm of a sentence is both positive and negative with respect to the equality
relation.

MULTIPLE MISMATCHED SUBSENTENCES

The resolution rule with relation matching can be extended to allow several corresponding pairs of
subexpressions 3,,¢;,32,¢t2, ... and sp,t, rather than a single pair s,t, and several binary relations «;, <
, ..., and <, rather than a single binary relation <. To write the extended rule succinctly, we abbreviate
81,82, ...,80 a8 8§, 81,80, ..., tn a8 £, <1, ~2, ..., and <, as <, and

8y %1t and s2 %3t2 and ... and s, X, t, as § < £

Then for any binary relations ~, expressions § and £, and sentences P(§t,¢+,5,£), 7[P(§+,§+, £, t“')],
and 9{P(f+,f+,§‘,§‘)], we have

FIP(s*,5%,8,i))
GLP(Et,i*,57,57)]

if3 Xt
then F[false] or Gltrue).

The extended rule is easily justified, given the soundness of the original rule.

RESOLUTION WITH RELATION MATCHING: GENERAL VERSION

The general version of the rule allows us to instantiate the variables of the given sentences as necessary
and then to apply the ground version. The precise statement, which we omit, is analogous to the precise
statement of the general version of the resolution rule. We illustrate the application of the general rule with
an example.

Example

Suppose our deduced set contains the sentences

if q(u)

and

;" G: not pi£+,f(8)+i l—.

Here the annotations of the subterms within the boxed subsentences indicate their polarity in these subsen-
tences with respect to a binary relation ~.

] The substitution § : {u « £} fails to unify the boxed subsentences of ¥ and §; the results of applying ¢
) to these subsentences are the sentences p(£*,£*) and p(¢*, f(£)7), respectively. Note that the mismatched
y occurrences of £ and f(£) are positive in these sentences with respect to —.

U

T N W o N R R T T T O P U O W T T PP Wy r gt a0e |

42 6. THE RELATION-MATCHING RULE

To apply the ground version of the rule to 6 and G4, let us take the intermediate sentence to be
p(&t,£%). We obtain

if £ f(0)
then [:{zei(e}a[st or (not true),

which reduces under true-false transformation to

f £ f(¢)

then not g(¢). a

SELECTION OF APPLICATION PARAMETERS

For each application of the resolution rule with relation matching, we must select the application pa-
rameters, i.e., the substitution 4, the intermediate sentence P, and the subexpressions s and t. In fact, a
satisfactory choice of application parameters is not straightforward: it depends on what other sentences are
in the deductive set. Some considerations influencing the decision are illustrated in the next few sections.

Choice of Substitution
The substitution § and the intermediate sentence 7 for applying the rule are not necessarily unique.

In the example above, consider again the boxed subsentences p(u*,u*) and p(¢*, f(¢)*) of 7 and §.
Instead of the substitution 6 : {u « £}, consider the substitution ¢’ : {u — f(£)}. This substitution also
fails to unify the boxed subsentences; the results of applying 8’ to the boxed subsentences are the sentences
p(f(O)F, f(O*) and p(et, f (€)*), respectively. Note that the mismatched occurrences of f(£) and £ are
positive in these sentences with respect to <.

To apply the ground version of the rule to ¥6' and G#', let us take the intermediate sentence to be
P(f(£)+, f(5)+). We obtain

if f6) < ¢
then [:j’;fn(e}alu] or (nottrue),

which reduces under true-false transformation to

f fle) =t
then not g(f).

This is not equivalent to the sentence we obtained by applying the rule with the substitution 4,

if £ 1(0)
then not g(£).

In other words, we must consider both ways of applying the rule.
To Unify or Not to Unify

In previous examples, we have applied the resolution rule with relation matching only when it is illegal
to apply the ordinary resolution rule because the matched subsentences fail to unify. In some cases, however,
we must use relation matching to obtain a refutation even though the matched subsentences do unify and
the resolution rule could be applied.

AT

e s o ot S SO 0 T
\ f&ﬁm.::;. PASLR A AR R DS S

o
%
)
A8
)
.
N 6. THE RELATION-MATCHING RULE 43
[.
* For example, suppose our deduced set consists of the sentences
»
20 1. zt) | or gzt
: e

by 3. not‘

4. c=%a
.7 5. c=b,

.I

s where z is positive in the boxed subsentence p(z) and in the subsentence g(z) with respect to the relation

~, as indicated by its annotation.

LY

It is legal to apply the ordinary resolution rule to the first two sentences, taking the unifier to be
{z — a}, to deduce (after transformation)

q(a).
However, this sentence is of no use in a refutation.

If instead we apply the resolution rule with ~<-matching to the same boxed subsentences, taking the

. unifier to be the empty substitution { }, we obtain (after transformation)

v

N : Y1+

N 6. if x %a then .

oy We can then apply the resolution rule to sentences 6 and 3, taking the unifier to be the empty substitution

{ }, to obtain {after transformation)

: 7. if £ %b then not(z < a).

%)

N We finally obtain a refutation by applying the resolution rule to this sentence and the last two sentences in
:' turn; the unifier is {z « c}.

-4

In applying the ordinary resolution rule, we committed z to be a; this turned out to be a mistake. In

.& applying the resolution rule with <-matching instead, we left z free to be any element such that z < a; in
: particular, we could then take z to be c.

. : Choice of Mismatched Subexpressions

& In the examples of resolution with relation matching we have seen, we have always taken the mismatched
» subexpressions s and ¢ to be as small as possible. Sometimes this choice costs us a proof.

For instance, suppose our deduced set consists of the sentences

- L |p(f(a) |*

2. not|p(f(b)) |~

. 3. fla) = f(b).
.",
I "

If we apply the resolution rule with equality matching to the first two sentences, taking s to be a and ¢
E to be b, we obtain

ifa=b
‘.'l“ then false or not true,
which reduces under transformation to
% not (a = b).

3, - - v = - - -y - L - ; L T ™ -
A ,v BT - - Wy - W “ T & - »
AU SRR, £ <1 S AN S b s A A AP AN L Dy Tyt

o e

=

A
¥ e

0

N T T T Y U W Ty T Uy Yoy hudBalh el B8 Sk A BNa s Do 2 A 8 8-2 0 g

44

bl il B ok Mod Bad el S0t 220 ko £on 2o o oAk Bt A et Bk Sy Bat dab shes 200 fo oo, 4 hAma fa]

6. THE RELATION-MATCHING RULE

This sentence is of no use in a refutation.
On the other hand, if instead we apply the same rule taking s to be f(a) and ¢ to be f(b), we obtain
if fla) = f(b)

then false or not true,
which reduces under transformation to
not (1(a) = 1(3))-
A refutation can be obtained immediately by applying the resolution rule to the third sentence and this one.

In the preceding examples, we have seen that in applying the resolution rule with relation matching,
the choice of appropriate application parameters, i.c., the substitution 6, the intermediate sentence P , and
the mismatched subexpressions s and t, are not unique and depend on the other sentences in the deduced
set. Digricoli [83] provides an algorithm to generate all legal sets of application parameters. This algorithm
is phrased in terms of his variant of the E-resolution rule but extends readily to the general, nonclausal
case. Digricoli also suggests a heuristic viability criterion for selecting a single appropriate set of application
parameters; this criterion appears to extend to the general case as well.

REPLACEMENT WITH RELATION MATCHING: GROUND VERSION

We have shown how to augment the resolution rule to apply even if the matched subsentences are not
entirely unified by the substitution. We now introduce an analogous augmentation of the relation replacement
rule.

Rule (replacement with relation matching, ground version)

For any binary relations «; and <, ground expressions s,tyu(st,tt,57,¢7), and v(st, tt, 5™, t7),
and ground sentences

f[u(s*, st T, tT) = u(st, st t, t')]

and
Glultr, t*, 87, s7)F, w(tt, tt, 57, s7)7),
we have
Flulst, s*, t=, t7) < vist, ot ¢t~ t')]
Glult™, %, 57, a7)F, wtt, ¢+, 57, s7)7)
if s %5t
then F(false] or G(uv(t*, t+, s=, s7)*, u(tt, t*, s, s7)7)
Here

o The expressions u({s*, t*, s~ t~) and v(a*, ¢+, s~ t~) are arbitrary expressions. The
sentence u{s’, t*, s7 t7) ~; v{st, t*, 5", t~) is called the intermediate sentence.

o The subsentences u(st, s*, t=, t7) <, v(s*, s*, ¢t=, t~) of 7 are obtained from the
intermediate sentence by replacing certain positive occurrences of ¢ with s and certain
negative occurrences of s with t, where polarity is taken in the intermediate sentence with
respect to —-.

* The subexpressions u(t*, t*, s, s7) and u(t*, t*, s~ 37) of G are obtained from
u(s*,t*, s7,t7) and v(s*, t+, 57, t7), respectively, by replacing certain occurrences of s

R R N Ry T O R R P AL T A T TN R A e e
LY TR L j | %2 + i 8] : », . AN, o
B T o S e S T VNIRRT, AR TN

LRI
.

K‘A\ "

4

6. THE RELATION-MATCHING RULE 45

with ¢ and certain occurrences of t with s, where again polarity is taken in the intermediate
sentence with respect to =2.

o The subsentence G(v(t*, t*, s, s7)*, u(t*, t*, s7, s7)7) of the conclusion is obtained
from G{u(t*, t*, s7, s7)*, o(t™, t*, s7, s7)~) by replacing certain positive occur-
rences of u(tt, t*, s7, s7) with v{t*, t*, s, 57) and certain negative occurrences of
v(tt, tt, s7, s7) with u{t¥, t1, 57, s7), where the polarity of u and v is taken in § with

respect to ;. a

For particular binary relations <; and =2, we shall call this the «;-replacement rule with ~;-matching.
Note that if u(t*, t*,s~, s7) and v{t+, t*, s, s~) were identical to u(s*, s*,¢t~,¢7) and v(st, s, t7, ¢t "),
respectively, we could apply the original «;-replacement rule without <z-matching, obtaining the conclusion

Flfalse] or G(v(t*, t*, s7, s7)F, u(tt, t*, s7, s7)7).

The augmented rule allows us to derive the same conclusion, even if the subexpressions do not match exactly,
provided that the mismatches occur between subexpressions s and t of restricted polarity with respect to
—~; and that the condition s <, ¢ is added.

Example
In a theory that includes the lists and the integers, suppose our deduced set contains the sentences
F: (|length(m™) |~ < a) or p(m)
and
G: if q(€) then (| length(£7) |t >b),
where £ and m are lists and a and b are integers.

The two boxed subexpressions are not identical, so we cannot apply the original <-replacement rule.
To apply the augmented rule, let us take our intermediate sentence to be length(€) < a. With respect to the
proper sublist relation <;,¢, the subterm s~ : £is negative in the intermediate sentence u <; v : length(f) < a.
From this sentence we can obtain the subsentence length(m) < a of ¥ by replacing the 1 egative occurrence
of £ with ¢t~ : m. Therefore, by the <-replacement rule with <;;,¢-matching, we deduce

if 12 Slist M
then false or p(m)
or

if 7(€) then a > b

Here the subsentence a > b of the conclusion is obtained from the subsentence leng*h(€) > b of G by replacing
a positive occurrence of u™t : length(f) with vt : b, where polarity is taken in § with respect to the weak
less-than relation <. The conclusion reduces under transformation *o

1'/ 4 flmt m
then p(m) or

if q(€) then a > b. 3

Now let us establish the soundness of the rule.

Justification {replacement with relation matching, ground version)

4

Note that (by the invertibility of partial replacements), the intermediate sentence u(s", t*,
v(st, t*, s, t7) can be obtained from any of the subsentences u{s™*, s*, t7, t7) <; v{st ' t7, t7) of

- - - . - - - - - ~ -2 - - L . .. - " 4 T e . T e T . PR L S R M g t
. R B CRE R P PR P B T PR A L -
. - SRS

P e m

) . .. -, , e e e T T

R et el L T [T A TP N T R R I I I e e T PR I LI)
e et e A e o B st Ao T K B B e K Mo AL PO o o8

r"!TWW“WWW“‘WWW’WWK"‘”‘“vVW‘("Y'T""'T'W‘Y'?‘Y'WY' LAl Ml Ao B A o B A A ot Snd ATiL auss ks 4 A |

46 6. THE RELATION-MATCHING RULE

¥ by replacing certain positive occurrences of s with ¢t and certain negative occurrences of ¢ with s, where
polarity is taken in the subsentences with respect to ~,. Therefore (by the polarity replacement proposition),
each of the sentences

‘lf 3 ‘_Sg t
1 then of u(s®, st t7, t7) <y v(st, s*, t7, ¢t7)
then u(st, t¥, s7, t7) <1 o{st, tt, s~ ™)
is valid.

Also any of the sentences u(t™, t*, s=, s7) <1 v(t™, t*, 57, s7) can be obtained from the intermediate
sentence u(s*, t¥, s7, t7) <, v(s*, t*, s7, t~) by replacing certain positive occurrences of s with ¢ and
certain negative occurrences of ¢ with s, where polarity is taken in the intermediate sentence with respect to
~3. Therefore (by the polarity replacement proposition again) each of the sentences

lf 38 jz t
(1) then of u(st, tt, 57, ¢t7) < v(st, t¥, s,
then u(th, t, 57, s7) < o(t*, t1, s
is valid.

Furthermore the subsentence G(v{t*, t*, s=, s7)*, u(t*, t*, s7, s7)) of the conclusion can be
obtained from the given sentence G(u(t*,t*, s=, s7)*, v(t*, t*, 57, s7)~) of the deduced set by replacing
certain positive occurrences of u{t*, t*, s7, s™) with v(t*, t*, s7, s7) and certain negative occurrences of
u(t*, t*, s7, s7) with u(t*, t*, s=, s7), where polarity is taken in § with respect to ;. Therefore (by
the polarity replacement proposition once again) each of the sentences

of w(tt, tt, 57, 87) < u(tt, tt, 57, 87)
(t1) then of G(u(t™, t7, 57, s7)*, u(t*, t*, 57, s7))
then G(u(tt, t¥, s=, s7)*, u(t™, t+, 5=, s7)7)
is valid.
Suppose that the ground sentences
Flu(st, s*, t7, t7) < v(st, s*, t7,t7)] and Gu{tt, t+, s=, s7)F, ot t*, s, s7)7T)
are true and that s <€, t. We would like to show that then
Flfalse] or G(v(t*, t*, s7, a7)F, ultt, t+, 57, s7)7)

is true. The proof distinguishes between two cases, depending on whether the intermediate sentence is false or
true. We show that in each case one of the two disjuncts, F[false] or G(v(tt,t*, s, s7), u{tt, t¥,s7,5s7)7),
13 true.

Case: u(s™, t*, s7,t7) =, v(st, t¥, s7, t7) is false

Then by our previous conclusion (t), because s <%, t, we know each of the subsentences u{s*,s*,t7,t7) =
v(st, s*, t7 t7) of 7 is falce. Because Flu(s*, s*, ¢, t7) = v(s*t, s*, ¢, t‘)] is true and because the
sentences u(s*, s*, t7, t7) <; v(s*, s*, t7, t”) and false all have the same truth value, we know (by the
value property) that the first disjunct, F{false], is true.

Case: u(s*, t*, a7 t7) ~« v{s*, t*, 87, t7) is true
b

Then by our previous conclusion (}), because s <, t, we know each of the sentences u(t*, t%, 57, s7) -
v(t*, t*, 57, s7) is true. Therefore by several applications of our previous conclusion (}t), because

Glult®, th, a7, s7)F v(tt, t*, 57, s7)7)

LTS Le

Fe

thr—s‘wvw\'\vvv‘\'\"t'v‘\"':"‘:w-:’vtwl“‘a‘rvv\"tu-trr.r‘:r.:r.v‘.'l'."r."r'l“ 1 ol e’ et It U S i e b giandish dhait el Jhglh - iad ek it ol NS

/’

6. THE RELATION-MATCHING RULE 47

is true, we know that the second disjunct,
GotT, tT, sT, s ultt, e, 5T, 87)),
is true.

In each case, we have shown that the desired conclusion is true.

REPLACEMENT WITH RELATION MATCHING: GENERAL VERSION

The general version of the rule allows us to instantiate the variables of the given sentences as necessary
and then to apply the ground version. We omit the precise statement, which is analogous to the general
version of the relation replacement rule, but we illustrate the general version with an example extracted
from the derivation of a program to sort a list of numbers.

Example

J

In a theory of lists of (say) integers, suppose our deduced set contains the sentences

7 {chrm(zl o ((u) oz2), y1 o ({u) 0y2)) | = perm(z; 02, v o yg)] *

and

G: not(ordered(z) and)

Here the term z; oz, is the result of appending the lists z; and z3, and the term (u) is the list whose sole
element is u. Also, perm(¢, z) holds if the list £ is a permutation of the list z, and ordered(z) holds if the
elements of z are in (weakly) increasing order. In the derivation, ¥ is one of the axioms for the permutation
relation, which states that two lists are permutations if they are still permutations after dropping a common
element, and § is the negation of the theorem, which states the existence of an ordered list that is a
permutation of a given list.

The results of applying the substitution
6: {z—y o{{u)oy)}
to the boxed subsentences are
perm((zy 0 ((u) 022))*, yio((u)ay))
and
perm(¢*, wi o ({u) 0ys)).
The mismatched subterms
;O ((u"} DIQ) and ¢

are positive in their respective subsentences with respect to the permi relation. (Because this relation is
symmetric, they also happen to be negative.) The boxed subsentence perm(f, z) is posizive in § with respect
to the equivalence relation =. (It also happers to be negative.) Therefore, by the =-replacement rule with
perm-matching, we may deduce the sentence

if perm(z, o ((u) 0 z2),£)
then false

not (ordered(yl o((u)o yz)) and perm(z) 022, Y uyz))

PRSI

) s AR LA
PV P N PP S S, W

ARl SALCRA AR Ak cah Rl Aa cah Can tod Calh bad tan Sad

48 6. THE RELATION-MATCHING RULE

which reduces under transformation to

if perm(I1 o ((u) o2z}, Z)

then not (ordered(y1 o({u)a yz)) and perm(z, 0z2, Y1 uyg)). 4

RELATION MATCHING VERSUS RELATION REPLACEMENT

The relation matching and relation replacement rules play complementary roles, and one might expect
that a single deductive system would employ one or the other rule but not both. After all, in clausal equality
systems, paramodulation and a variant of E-resolution have each been shown to be complete (Anderson [70],
Digricoli [83], and Brand [75]) without including the other. Moreover, by incorporating both rules, we admit
a troublesome redundancy: The same conclusion can be derived in several ways.

On the other hand, it often turns out that a proof that seems unmotivated or tricky using only one of
the rules seems more straightforward using a combination of both. For instance, in an example of a previous
section, we applied the resolution rule with relation matching to the sentences

if q(u)
T e

and

G: ot p(&F, f()F) -
taking the substitution to be
6: {ue £},

to obtain after transformation

AERICN

then not q(€).

If our deduced set also contains the sentence
v -(_f(v) ,

we can further deduce (by resolution) the sentence
not q(¢).

Now suppose our deductive system includes the relation replacement rule but not the relation-matching
rule. Then to deduce the same conclusion not ¢(£), we would have to apply tie relation replacement rule to
the sentences

o] = 1)

and

G: notp(£*] f(4)

to obtain (after transformation)

not[1 7£(8), f(0)]

)

R T

~
.

Y

. e o .-, . NP

N R AR N NN
LR A S R R e NS R
w‘mm‘.&h‘.lmﬂhﬁ.n}. uBom

AD~A175 243 A DEDUCTIVE APPROACH TO COMPUTER PROGRAMMING(U)
. STANFORD UNTVY CA DEPT OF COMPUTER SCIENCE Z MANNA 1986

AF
UNCLASSIFIED

0SR-TR-86-2164 AFOSR-81-08014
F/G 972

At s w e .. D PP L T T Madyiin CENPTY . WS x . B Lol AaG v ae i . gb- P .o a2 n.

AT A >,
S A

S| =

g
-

=S

o

===
NF
o

m2.8
B2

(o

|

I
I

I

o
FTEEER

L =
TR T ;

I

T g-.
s e

N
(&%

I

H
\ -
§°20COPY RESOLUTION TEST CHART -

-

T e T
Ualt ot

y ‘a:r..- ¥

v

3 T _ ¢ p & 2t
IR

A

A

12

o

x‘u"-.‘ .;\. r. .A.

7. STRENGTHENING 49

We could then obtain the same conclusion (not q(Z)) by resolution applied to this sentence and the sentence

if q(u)

7 then

Although both sequences of inference lead to the same conclusion, the earlier proof seems better mo-
tivated: ©cach step is based on matching subexpressions that already possess a high degree of syntactic
similarity. In contrast, the above proof seems rather gratuitous: The application of the relation replacement
rule is based on matching the variable v with the constant £. There is no reason to perform this step except
as a preparation for the subsequent resolution step.

Examples can also be exhibited for which a proof employing the replacement rule is well-motivated but
the corresponding proof using the matching rule appears strained. For instance, in the theory of integers,
use of the =-replacement rule and the axiom u + (—u) = 0 allows us to simplify a subterm of form ¢ + (—t)
to 0. T¥ ve are only permitted to use the relation-matching rule, we must leave the subterm intact, and hope
that we attempt to match it against a corresponding subterm O later in the proof.

We expect that by including both rules together in a system we shall be able to apply more restrictive
strategies to each of them. Consequently, we shall obtain a smaller search space than if we had included
either of the rules separately.

7. STRENGTHENING

The relation replacement rule of Section 5 does not always allow us to draw the strongest possible
conclusion. In this section we establish a stronger form of the polarity replacement lemma and use it to
develop a stronger relation-replacement rule.

We motivate the strengthening of the rule with an example. In the theory of the integers, suppose our
deduced set contains the sentences

[s]<t

and

aSE++2.

Because the occurrence of s in § is positive with respect to the less-than relation <, the<-replacement rule
allows us to replace s with ¢ and deduce that (after transformation)

a<tt+2.
From these two sentences, however, we should be able to deduce the stronger result
a<t+2.

Similarly, from the sentence s < t and not {(a — s > b), we should be able to deduce not {a — ¢t > b) rather
than merely not (a — t > b).

Unfortunately, the rule as we have presented it does not yield these more useful conclusions; the strength-
ened relation-replacement rule will. But first, we must introduce some preliminary notions.

THE STRENGTHENED POLARITY-REPLACEMENT LEMMA

The strengthened rule depends on the following basic result:

- L Sty o
SR N Sh .* v Mo \-1 o
BRI e T N G Ny e N P T B T S N S SRR e _.;..x’l

Lan Ade Ao die an. TR T T T T Y -1

50 7. STRENGTHENING

Lemma (strengthened polarity replacement)

Consider arbitrary expressions ¢(z,y) and ¢'(z,y) and binary relations <, and —«;. The sentence

fz<y
then if e(z,y) <3 ¢'(z,y)
then e(y, z) <2 €'y, z)

is valid provided that the replaced occurrences of z and y satisfy the following strengthening con-
ditions [in e(z,y) and ¢'(z,y) with respect to <1 and <3|:

e transitivity condition
The relation <2, the irreflexive restriction of 3, is transitive.
e top condition

The replac~d occurrences of z and y are respectively positive and negative in e(z,y) <2
¢/(z,y) w. respect to <.

o left-right condition
One of the following two disjuncts holds:

The replaced occurrences of z and y in ¢{z,y) are respectively negative and positive in
e{z, y) with respect to <, and <2 (and some replacement it made in e{z, y))

(left disjunct)
or

the replaced occurrences of z and y in ¢'(z,y) are respectively positive and negative in
¢’(z,y) with respect to <; and <z {(and some replacement is made in ¢'{z, y)).

(right disjunct)
o
Before proving this proposition, let us illustrate it with an example.

Example (strengthened polarity-replacement lemma)

In a theory that includes the sets and the nonnegative integers, take «<; to be the proper-subset relation
C over the sets and ~2 to be the weak less-than relation < over the nonnegative integers. Then <3 is the
strict less-than relation <.

Consider the sentence
m - card(y) < n + card(z),

where z and y are sets, m and n are nonnegative integers, and card(z) is the cardinality of the set z.
According to the lemma, the sentence

ifrC,
then if m card(y) < n+ card(z)
then m card(z) < n + card(y)

is valid, because the replaced occurrences of z and y satisfy the strengthening conditions in m - card(y) and
n + card(z) with respect to < and <. In particular,

o The relation < is transitive; hence the transitivity condition is satisfied.

<+ _ “->‘.‘ - - .\

PR RIS ;';L‘A\.; PSRN "'”)

S

.

9,44, L

Iy

7. STRENGTHENING 51

L

e The replaced occurrences of z and y are respectively positive and negative in m-card(y) <
n + card(z) with respect to C; hence the top condition is satisfied.

’

o
- ¢ Although the replaced occurrence of y is not positive in m - card(y) with respect to C
- and < (after all, m could be 0), the replaced occurrence of z is positive in n + card(z)
:;- with respect to C and <. Hence, though the left disjunct of the left-right condition is not
" satisfied, the right disjunct is. a
\": We are now ready to establish the lemma.
"
> Proof (strengthened polarity-replacement lemma)
Suppose that
-: T4y and C(I, y) 2 e,(x) y)s
and that the strengthening conditions are satisfied.
N We would like to show that then
Z C(y, I) <2 e'(y, :C).
-:; The left-right condition was stated as a disjunction of two possibilities; we treat each possibility sepa-
2 rately.
~
) Case (left disjunct): The replaced occurrences of z and y in e(z,y) are respectively negative and
> positive in e{z, y) with respect to <, and <, (and some replacement is made in ¢(z, y)).
. In this case (by the transitive polarity-replacement lemma, because z <, y}, we have
:; e(y, z) <2 e(z,y).
Also (by the polarity replacement proposition and our supposition that z «; y and e(z,y) <2 ¢'(z,v))
- we have
v e(z,y) <2 ¢'(y, 7).
_‘.ﬂ (Here we have only performed the replacements on the right-hand side; by the top condition, we know the
[+ replaced occurrences of z and y are respectively positive and negative in e(z,y) <3 ¢'(z,y) with respect to
T ~<1.) It follows that
»
- e(z,y) <2 €'(y,z) or e(z,y)=e(y,z).
. Because e(y, z) <2 ¢(z,y), we thus have (either by the transitivity of <2 or the substitutivity of equality)
o~ that
"J'
_‘:’- e<y) I) <2 c,(yl I),
. = as we wanted to show.
- Case (right disjunct): The replaced occurrences of z and y in e'(z,y) are respectively positive and
z negative in e'(z, y) with respect to <; and <, (and some replacement is made in e(z, y)).
»
; The proof in this case is entirely symmetric to the proof in the previous case. a
.r
"
THE STRENGTHENED POLARITY-REPLACEMENT PROPOSITION

The strengthened rule is expressed in terms of the following notational device:

LT

Py
e 2 o
a’a

ata

£ R A)

Gt G

[YL S Gy o= &

M&"&ﬁ-_& o

D RSN

-

)

~|
;-
»

WA 7 IS SOOI Y et
A AMAHLALYY, 'L -I.h S ()

52 7. STRENGTHENING

Definition (strengthen accordingly)

Suppose - is a binary relation, s and t are expressions (either both sentences or both terms), and
G is a sentence.

If we write § as G(st, t~), then G(t*, s~)' denotes the sentence obtained by replacing certain
positive occurrences of s with ¢, replacing certain negative occurrences of ¢ with s (where polarity
is taken with respect to <), and strengthening accordingly as follows:

e Whenever a replacement is made in a positive subsentence of form e(s, t)~<¢'(s, t), where
the replaced occurrences of s and ¢ satisfy the strengthening conditions in e(s, t) and ¢'(s, t)
with respect to < and X, replace the occurrence of the symbol = with =<, the irreflexive
restriction of <.

e Whenever a replacement is made in a negative subsentence of form e(s,t)~e'(s,t), where
the replaced occurrences of s and ¢ satisfy the strengthening conditions in e(s, t) and ¢’(s, t)
with respect to < and 7‘2, replace the occurrence of the symbol ~< with <. (Here ;(and <
are the negation, and the reflexive closure, respectively, of ~.) a

These conditions may appear mysterious at this point, but they are precisely what we need to establish
the following result, which tightens up the polarity replacement proposition:

Proposition (strengthened polarity replacement)

For any binary relation < and sentence P{z*, y™), the sentence

f z <y
then if P{z*, y~)
then P(y*, z7)!

. .
is vali 3

We illustrate the proposition with two examples.

Example

In the theory of the positive integers (excluding 0), take <« to be the proper-divides relation <4i, and
take our sentence to be

Pix*,y™): a<(z+1)% or g(z).
Then according to the proposition, the sentence

f T <4y
then if a < (z+1)% or ¢(z)
then a < (y+ 1)? or g(z)

is valid. Note that the symbol < has been replaced by its irreflexive restriction < as a result of the strength-
ening. This is because

o The subsentence a < (z + 1)? is positive in P{z*, y™).

o The replaced occurrence of z in a < (z + 1)? satisfies the strengthening conditions in a
and (z + 1)? with respect to <4y and <. In particular

s The relation < is transitive; hence the transitivity condition is satisfied.

=, .”’ \ﬂ ‘.w
A

S S AL AN Ly

PC 4N, A

o af S
P

N

\#'I‘.."\-l

Y

7. STRENGTHENING 53

s The replaced occurrence of z is positive in a < (z + 1)2 with respect to <g;y;
hence the top condition is satisfied.

» The replaced occurrence of z is positive in (z + 1)2 with respect to <g4;y and <;
hence the right disjunct of the left-right condition is satisfied. 3

Example

In a theory that includes the lists and the nonnegative integers, take < to be the tail relation <,y over
the lists and take our sentence to be

P(zt, y~): if length(z08) < length(y) + m then gq(z,y),

where z, y, and £ are lists, m is a nonnegative integer, and length(€) is the number of elements in the list £.
Then according to the proposition, the sentence

if T <tait Y
then if if length(z 08) < length(y) + m then q(z,y)
then if length(y 0£) < length(z) + m then g(z,y)

is valid. Note that here the symbol < has been replaced by < as a result of the strengthening. This is
because

e The subsentence length(z 0€) < length(y) + m is negative in P(z+, y~).

o The replaced occurrences of z and y satisfy the strengthening conditions in length(z 0 £)
and length(y) + m with respect to <. and £, that is >. In particular

w The relation >, the irreflexive restriction of >, is transitive; hence the transitivity
condition is satisfied.

s The replaced occurrences of z and y are positive and negative, respectively, in
the sentence length(z 0 £) > length(y) + m with respect to <¢q; hence the top
condition is satisfied.

s The replaced occurrence of z is negative in length(z o £} with respect to <q
and >; hence the left disjunct of the left-right condition is satisfied. (As it turns
out, the replaced occurrence of y is also negative in length(y) + m with respect
t0 <¢qir and >; hence the right disjunct is also satisfied.)

Let us now prove the proposition.

Proof (strengthened polarity-replacement proposition)
We suppose that
z=<y and P(z*, y7),
and show that then
Plyt, z7)1.

The sentence P{y*, z7)' is obtained from P(z*, y~) by replacing certain subexpressions with others. We
show that each of these replacements makes the sentence “truer,” in the sense that it produces a sentence
implied by the original.

We consider separately three kinds of replacement:

7. STRENGTHENING

Replacing a positive subsentence of form e(z, y)~ ¢'(z, y) with e(y,)< ¢'(y,), where the replaced
occurrences of z and y satisfy the strengthening conditions in e(z, y) and ¢'{z, y) with respect to <
and .

In this case, because z < y, we have (by the strengthened polarity-replacement lemma) that
if e(z,y) = ¢'(z,y)
then ey, z) <e'(y, z).

Therefore, because the replaced occurrence of e(z,y)~ ¢'(z,y) is positive in P(z*, y~), we know (by the
original polarity-replacement proposition) that replacing it with the “truer” subsentence e(y, z)< ¢'(y, z)
makes the entire sentence truer.

e Replacing a negative subsentence of form e(z, y) < ¢’ (z, y), with ¢(y,)= ¢'(y, =), where the replaced
occurrences of z and y satisfy the strengthening conditions in e{z, y) and ¢’(z, y) with respect to =<

and ; (the negation of).

In this case, because z « y, we have (by the strengthened polarity-replacement lemma, recalling that 2
is the irreflexive restriction of #)

if ez, y)A ¢z,)
then e(y,)£ ¢'(y, z)
or, equivalently (taking the contrapositive},
if e(y,) X ¢'(y, 2)
then e(z,y) = ¢'(z,y).

Therefore, because the replaced occurrence of e(z, y)~ e'(z,y) is negative in P(z*, y~), we know (by the
original polarity-replacement proposition) that replacing it with the “falser” sentence e(y, z)<¢'(y, z) will
make the entire sentence falser.

e Replacing a positive occurrence of z with y or a negative occurrence of y with z, where polarity is
with respect to < and where the replaced occurrence is not within the scope of any strengthened
relation —~.

In this case, the replacement makes the sentence “truer,” by the original polarity-replacement proposi-

tion.
ion.

THE GROUND VERSION

We can now express the stronger version of the relation replacement rule. The ground version of the
rule is as follows:

Rule (strengthened relation replacement, ground version)

For any binary relation =, ground expressions s and t, and ground sentences s < t] and G(s*,¢t7),

we have
Fls <]
G(s*, t7)
Flfalse] or G(t*, s7)!
e o S e A . TROTRt .
P -f' I‘ J' 4 >» -
o e e S e iy .\‘lﬁ.\.ﬁh\ .s'iw. B NN RO NENN RS

i
% YA

. - . - . Yy a \ v » . . S 0 . g] r tai t vmw‘.m'.ﬂv‘c'--vﬁmvv*v-.1;-wu—‘u‘

R 7. STRENGTHENING 55

Here G(t*, s~)' is the result of replacing certain positive occurrences of s with ¢, replacing certain
8% negative occurrences of ¢ with s, and strengthening accordingly, where polarity is taken in G(s*,t7)

Y :'_' with respect to <. We assume that at least one replacement is made. g
N
S\
0N . . .
By Let us illustrate the ground version of the rule with two examples.
L,
e Example
s
':(\:'_ In the theory of the positive integers (excluding 0), suppose our deduced set contains the sentences
!
S F: if p(s) then E<d.-,, t
5 Y and
')
L §: a< (o] +1)° or g(s),
A
L where <y, is the proper divides relation. Then we can apply the strengthened —<4;,-replacement rule to
J‘.,_i PPy
hs replace the boxed occurrence of s in § with t and to strengthen accordingly, obtainin
g y g
‘-,:‘, if p(s) then false
-:':\' or
SSAN 2
NN a<(t+1)% or q(s).
AAY
Ay This sentence reduces under transformation to
o (ne*p(s)) or a < (t+1)? or g(s).
et
_:{: The relation symbol < was replaced by its irreflexive restriction < because a < (s + 1)? is positive and
~n because s and ¢ satisfy the strengthening conditions in a and (s + 1)? with respect to <4, and <, as we
r: have seen in a previous example.
A.:: . Example
N .
g In a theory that includes the sets and the nonnegative integers, suppose our deduced set contains the
v sentences
ey

= 7 p(s.t) or (ﬂc@

an-i

s >
s o not (q(s,t) and m card(Er) <n+card(g)),
'SR -
RS .
28 witerr « an-d t are sets, m and n are nonnegative integers, and card(s) is the cardinality of the set s. Then
- we an apply the strengthened C-replacement rule to replace the boxed occurrences of s with ¢t and ¢ with
. wel o sttengthen accordingly, obtaining
e (<. t) or false
.f‘_:' or f
ot not (y(s,t) and m card(t) <n+ card(s)), ;

that s (after transformaticn), i

) (s, t) or
3 not (q(s. t) and m - card{t) <n+ card(s)).

X o
K &m&dAMﬁkﬂmm&&ﬁmm}Jﬁﬂx’&?&fﬂﬁm}tﬁkﬁhrx&hﬂm&fﬂl

TN NI T T G TR TR T TR TR T TN B TR AR TRUR R WO RO WTL PO UrrOrrOr ToR o MOAMLEC Al b h ad 18 addl At B A8 & b suh mok ion kak ol <o]

56 7. STRENGTHENING

The relation symbol < has been replaced by its reflexive closure < because m - card(s) < n + card(t) is

negative and because s and t satisfy the strengthening conditions in m card(s) and n + card(t) with respect
to C and £, that is, >. In particular,

e The irreflexive restriction > of > is transitive; hence the transitivity condition is satisfied.

e The replaced occurrences of s and t are respectively positive and negative in m-card(s) <
n + card(t) with respect to C and >; hence the top condition is satisfied.

e The replaced occurrence of ¢ is negative in n + card(t) with respect to C and >; hence the

right disjunct of the left-right condition is satisfied. 3

Let us now establish the soundness of the rule. |

Justification (relation replacement rule, ground version)
The proof resembles the justification of the original relation-replacement rule.

We suppose that the given sentences F[s < t] and (s, ¢t~) are true and show that the newly deduced
sentence (7(false] or G(t*, s7)T) is also true. We distinguish between two cases and show that in each case
one of the two disjuncts, ¥|false] or G(t*, s7)7, is true.

In the case in which the subsentence s <t is false, we know (by the value property, because s < ¢ and
false have the same truth value and F[s « t] is true) that the first of the disjuncts, 7[false], is true.

In the case in which s ~« t is true, we know (by the strengthened polarity-replacement proposition,

because G(s*, t) is true) that the second of the disjuncts, §(t*, s~)7, is true. a

THE GENERAL VERSION

The general version of the rule allows us to instantiate the variables of the sentences as necessary to
create common subexpressions.

Rule (strengthened relation replacement, general version)

For any binary relation ~, expressions s, t, 3, and t, and sentences 7[s ~ t] and G(5, t+), where
¥ and § are standardized apart, we have
Fls = ¢
§(3%,)
F8(false] or GO(tH, s67)1,

~ A
where 6 is a simuitaneous, most-general unifier of s, 3 and of ¢, t. 4

As usual, to apply the general version of the rule to sentences ¥ and G, we apply its ground version to 74
and G6. The justification, which is straightforward, is omitted. As before, the polarity strategy for the rule
allows us to assume that a least one occurrence of the subsentence (s —« t)f is positive or of no polarity in

7.

L T A R e L R e LTh L i m tn cm taea Rt LT e e e
T e T P N L i I R P R A S IS A I SRR T J
AL S TV I et i o A R R R AT Ll S S O BN &

AN

8. EXTENSIONS 57

8. EXTENSIONS

The concepts in this paper are being extended in several directions. We briefly indicate several of these
here.

EXPLICIT QUANTIFIERS

The system we have described deals with sentences that have had their quantifiers removed by skolem-
ization. It is impossible, however, to remove quantifiers that occur within the scope of an equivalence (=)
connective or in the tf-clause of a conditional (if-then-else) connective without first paraphrasing the con-
nective in terms of others. If several of these connectives are nested, the paraphrased sentence becomes
alarmingly complex.

In an earlier work (Manna and Waldinger [82]), we extend the deductive system to sentences that
may have some of their quantifiers intact. In many cases, we can complete the proof without removing all
the quantifiers. If these quantifiers are in equivalences or if-clauses, we need not paraphrase the offending
connectives. Thus, we not only retain the form of the original sentence, but also can use the equivalences
we retain in applying the equivalence replacement rule.

POLARITY WITH RESPECT TO AN EXPRESSION

We have used the notion of polarity with respect to a relation. Because a function is a special case of
a relation, we can define polarity with respect to a function accordingly. Rather than restricting ourselves
to the functions denoted by the function symbols in our deduced set, we prefer to consider the functions
corresponding to particular expressions in the set.

Roughly speaking, suppose ¢[s] is a ground term; then e[s] corresponds to a binary relation <, defined
by the sentence

z "e[a] y = e[z] =Y.
We may define polarity with respect to [, just as we would with respect to any binary relation.

For example, in the theory of the integers, the relation ., corresponding to the term es] : s + 1 is
defined by the sentence

T~y =z+1l=y

(In fact, this relation turns out to be the predecessor relation <p,eq we have seen earlier.) The relation
natnum(z), which holds if z is a nonnegative integer (natural number), is positive over its argument with
respect to —<,}, for we have

if z *"["l Yy
then if natnum(z)
then natnum(y).

We can then establish an expression replacement rule analogous to our relation replacement rule; i.e.,
in the ground version:

For any expressions s and e{s] and ground sentence G{s%, ¢|s]”}, we have

o

G(s*, els]7)
Gels]*, s7)!

- Lo~ T <

DRI

N N N e ey e Y

- - « - - - - - - - . - . - - . e g
Tl Al i Tt s J.'zAué.-‘*.;‘.Luﬁ.‘m‘.;‘uL_A‘,.;.'&:.'- A CRERERAS A TR TRERURRIR TS LR OIS,

i b i B i Al Sk ok i bk leur San Ba- aa- et aav b ghi bl BA LME oo8 o¢R- aia avd aod g WUNORU RGN ERORTR EN PN TN TN PR SO T Ry T O Ry g

58 8. EXTENSIONS

Here G(e[s|*, s7)T is obtained from G(s*, ¢[s]™) by replacing certain positive occurrences of s with e]s],
replacing certain negative occurrences of e[s] with s, and strengthening accordingly, where polarity is taken
in G(s*, e[s]”) with respect to =<,

For example, in the theory of the integers, if our deduced set contains the sentence
G: ot [natnum((s +1)7)]
we may deduce the sentence
not [natnum(s)],

because the occurrence of s+ 1 is negative in § with respect to the relation corresponding to the expression
s+ 1.

We can also define expression-matching rules analogous to our relation-matching rule.
For example, in the theory of lists, suppose our deduced set contains the sentences
F: |aest
and

wot ((TEB5]).

Here the term bos is the result of inserting the element b before the first element of the list s. By the resolution
rule with expression matching, whose precise statement we omit, we may deduce (after transformation), the
contradiction false, because s is positive in the boxed sentence a € s with respect to the relation corresponding
to bos.

CONDITIONAL POLARITY

Sometimes it is convenient to extend the notion of polarity to depend on the truth of certain conditions.
For example, in the theory of integers (including negative integers) with respect to the relation <, the
occurrence of s in the sentence

a<b s

might be regarded as positive if b is nonnegative and negative if b is nonpositive. (If 4 is 0, the occurrence
might have both polarities). We could then adapt the relation replacement and relation matching rules to
use this conditional polarity, imposing the appropriate conditions on whatever conclusion they draw.

More precisely, we define the notion of conditional polarity so that if z and y are respectively positive
and negative in P(z*, y~) with respect to the binary relation < subject to the condition X|z,y, Q], then the

sentence
if z<y
¥ |z, y, then if P(zt, y™)
then Ply*, z7)!

is valid. Here Q denotes an arbitrary sentence; the indicated polarities of the replaced occurrences of z and
y are subject to the condition ¥z, y, Q].

For example, according to this notion of conditional polarity, in the theory of the integers, the occurrence
of z in the sentence j

a<b+z?

SERRE] P, ANAAAIN} Falulalaler, §,

R R A T “j
AP -.(AJ{..-.{‘.J'_ J_. :'.r-.{_ '.“._.r.

8. EXTENSIONS 59

is positive with respect to the relation < subject to the condition
>0
N[z, y, Q]: fz2
=y, 2] then Q.
Consequently, we have that the sentence
tfz>0
then if z <y

then if a < b+ z2
then a < b+ y?

is valid. The relation < was replaced by < as the result of strengthening.
In terms of this notion, we can introduce conditional versions of the relation replacement rule and

relation-matching rules. In particular, we have the conditional relation-replacement rule, i.e., in the ground
version:

For any binary relation <, ground expressions s and ¢, and ground sentences #[s < t] and G(s*,t7),
we have

Fls = t]

G(s*, t7)

X|s,t, false] or Flfalse] or G(t*, s™)'.

Here the indicated polarities of the replaced occurrences of s and t are subject to the condition

Xs,t, 2.
For example, in the theory of the integers, suppose our deduced set contains the sentences

if r(s,t)

then s <t

and
G: a<b s
Note that the occurrence of s in § is positive with respect to the relation < subject to the condition

if 6>0
then Q.

Therefore, according to the conditional <-replacement rule, we may deduce

if 5>0 if r(s,t) ‘
[then falae} or [then false ora<b-t,

which reduces under transformation to
(not (b >0)) or (not(r(s,t))) or a<b-t.

The conditional relation-matching rules are analogous. Of course these rules can be extended to apply
to conditional polarity with respect to «n expression rather than a relation.

PLANNING AND THE FRAME PROBLEM

Theorem-proving techniques have often been applied to problems in automatic planning. One approach
to this application has heen the formulation of a situational logic, a theory in which states of the world are

.(l q -‘. ".A‘V'Jl...' - -"l.'._'.' Ko a” .A'j

.-
~
-
R~
-

60 8. EXTENSIONS

regarded as domain elements, denoted by terms. Typically, an action in a plan is represented as a function
mapping states into other states. The effects of an action can be described by axioms.

For example, the primary effect of putting one block on top of another is expressed by an axiom such as

if clear(z, w) and clear(y, w)
then on(z,y, puton(z,y, w)).

In other words, if block z is put on block y in a state w, then z will indeed be on y in the resulting state
puton(z,y, w). The antecedent expresses the preconditions that z and y be clear before z can be put on y;
in other words, no block can be on z or on y. (The conventional blocks-world hand can move only one block
at a time.)

In a situational logic, a problem may be expressed as a theorem to be proved. For example, the prablem
of achieving the condition that block a is on block b and block & is on block ¢ might be phrased as the
theorem

(3)[on(a,b,2) and on(b,c,z)].

The frame problem, which occurs when planning problems are approached in this way, is connected with
the requirement that we need to express not only what conditions are altered by a given action, but also
what conditions are unchanged. For example, in addition to the primary effect of putting one block on top
of another, we must state explicitly that this action has no effect on other relations, such as color; otherwise,
we shall have no way of deducing that the color of a block after the action is the same as its color before.
Therefore, we must include in our deduced set the frame axiom

if clear(z,w) and clear(y, w)
then 1f color(z, u, w)
then color(z,u, puton(z, y, w))

In other words, if the action of putting block z on top of block y is legal and if block 2 is of color u in state
w, then z will also be of color u in the resulting state puton(z, y, w). If our deduced set contains the sentence

not (color(c, red, puton(a, b, s))),
we can then apply the resolution rule to the frame axiom and this sentence to deduce (after transformation)
(not (clear(a,s))) or (not (clear(b,s))) or (not (color(c,red,s))).

We need a separate frame axiom not only for the color of blocks, but also their size, shape, surface
texture, and any other attributes we wish to discuss in our theory. Adding all the frame axioms to our
deduced set aggravates the search problem, because the axioms have many consequences irrelevant to the
problem at hand.

By use of the conditional expression rules, we can drop all the frame axioms from our deduced set.
For example, to paraphrase the above axiom we can declare that the relation color(z, u, w) is positive with
respect to the relation corresponding to the expression e[w] : puton(z, y, w) subject to the condition

Wi w' O 1f clea:(r,w) and clear(y, w)

then .
If our deduced set again contains the sentence
not (ccr[or(c, red, puton{a, b, s) ')),

we can then apply the conditional expression-replacement rule to deduce

(not (clear(a,2))) or (not (clear(b,s))) or (not (color{c,red. s)))

as before, without requiring the frame axiom. Of course, the information that certain actions and relations
are independent must still be expressed, but this can be done by polarity declarations rather than by axioms.

s
NS A

G

3
.

, . 7, o
A

l‘
o

5 ' 5
z
£/

v

9. DISCUSSION 61

9. DISCUSSION

The theorem-proving system we have presented has been motivated by our work in program synthesis,
and the best examples we have of its use are in th.e domain. We have used the system to write detailed
derivations for programs over the integers and real numbers, the lists, the sets, and other structures. These
derivations are concise and easy to follow: they reflect intuitive derivations of the same programs. A paper
by Traugott [85] describes the application of this system to the derivation of several sorting programs. A
paper by Manna and Waldinger [85] describes the derivation of several binary-search programs. Our earlier
informal derivation of the unification algorithm (Manna and Waldinger [81]) can be expressed formally in
this system.

An interactive implementation of the basic nonclausal theorem-proving system was completed by Malachi
and has been extended by Bronstein to include some of the relation rules. An entirely automatic imple-
mentation is being contemplated. The relation rules will also be valuable for proving purely mathematical
theorems. For this purpose they may be incorporated into clausal as well as nonclausal theorem-proving
systems.

Theorem provers have exhibited superhuman abilities in limited subject domains, but seem least com-
petent in areas in which human intuition is best developed. One reason for this is that an axiomatic
formalization obscures the simplicity of the subject area; facts that a person would consider too obvious to
require saying in an intuitive argument must be stated explicitly and dealt with in the corresponding formal
proof. A person who is easily able to conduct the argument informally may well be unable to understand
the formal proof, let alone to produce it.

Our work in special relations is part of a continuing effort to make formal theorem proving resemble
intuitive reasoning. In the kind of system we envision, proofs are shorter, the search space is compressed,
and heuristics based on human intuition become applicable.

ACKNOWLEDGEMENTS

The authors would like to thank Martin Abadi, Alex Bronstein, Tomas Feder, Eric Muller, Neil Murray,
David Plaisted, Mark Stickel, Jon Traugott, and Frank Yellin for their suggestions and careful reading. Jon
Traugott suggested extending the notion of polarity from one relation to two, making the rules more powerful
and the exposition simpler; he also proposed the extended notions of polarity with respect to an expression
and conditional polarity. The manuscript was prepared by Evelyn Eldridge-Diaz with the TEX typesetting
system.

REFERENCES

Anderson [70]
R. Anderson, Completeness results for E-resolution, AFIPS Spring Joint Computer Conference,
1970, pp. 652-656.

Boyer and Moore [79]
R. S. Boyer and J S. Moore, A Computational Logic, Academic Press, New York, N.Y., 1979.

Brand [75]
D. Brand, Proving theorems with the modification method, SIAM Journal of Computing, Vol. 4,
No. 2, 1975, pp. 412-430.

Chang and Lee [73]

Lot A

PP
.
.

A

62 9. DISCUSSION

C. L. Chang and R. C. Lee, Symbolic Logic and Mechanical Theorem Proving, Academic Press,
New York, N.Y., 1973.

Digricoli [83]
V. Digricoli, Resolution By Unification and Equality, Ph.D. thesis, New York University, New York,
N.Y., 1983.

Kowalski [79]
R. Kowalski, Logic for Problem Solving, North Holland, New York, N.Y., 1979.

Loveland [78]
D. W. Loveland, Automated Theorem Proving: A Logical Basis, North-Holland, New York, N.Y.,
1978.

Manna and Waldinger {80]
Z. Manna and R. Waldinger, A deductive approach to program synthesis, ACM Transactions on
Programming Languages and Systems, Vol. 2, No. 1, January 1980, pp. 90-121.

Manna and Waldinger [81]
Z. Manna and R. Waldinger, Deductive synthesis of the unification algorithm, Science of Computer
Programmaing, Vol. 1, 1981, pp. 5-48.

Manna and Waldinger (82|
Z. Manna and R. Waldinger, Special relations in program-synthetic deduction, Technical Report,
Computer Science Department, Stanford University, Stanford, Calif., and Artificial Intelligence
Center, SRI International, Menlo Park, Calif., March 1982.

Manna, Z., and R. Waldinger (85a]

The Logical Basis for Computer Programming, Addison-Wesley, Reading, Mass., Volume 1: Deduc-
tive Reasoning (1985), Volume 2: Deductive Techniques (to appear).

Manna, Z., and R. Waldinger |85b]

The origin of the binary-search paradigm, Ninth International Joint Conference on Artificsal Intel-
ligence, Los Angeles, August 1985.

Morris [69]
J. B. Morris, E-resolution: extension of resolution to include the equality relation, International
Joint Conference on Artificial Intelligence, Washington, D.C., May 1969, pp. 287-294.

Murray (82]
N. V. Murray, Completely nonclausal theorem proving, Artificial Intelligence, Vol. 18, No. 1, 1982,
pp- 67-85.

Robinson [65]
J. A. Robinson, A machine-oriented logic based on the resolution principle, Journal of the ACM,
Vol. 12, No. 1, January 1965, pp. 23-41.

Robinson (79|
J. A. Robinson, Logic: Form and Function, North-Holland, New York, N.Y., 1979.

Stickel [82]
M. E. Stickel, A nonclausal connection-graph resolution theorem-proving program. National Con-
ference on AJ, Pittsburgh, Pa., 1982, pp. 229-233.

Traugott [85]
J. Traugott, Deductive synthesis of sorting algorithms, Technical Report, Computer Science De-
partment, Stanford University, Stanford, Calif. (forthcoming).

LI A N N ST

AN SRR

S L T e

"

P U I 2

_\'.h':q- T4

.. “\,h

RN Ao B w b et - — —————— ey

9. DISCUSSION 63

Wos and Robinson [69]
L. Wos and G. Robinson, Paramodulation and theorem proving in first order theories with equality,
in Machine Intelligence 4 (B. Meltzer and D. Michie, editors}) American Elsevier, New York, N.Y.,
1969, pp. 135-150.

'l\ -l

e - ..l -l .‘v -I .i .. . -Q ‘-
TR CYEL LU CLOR PO AT AN

‘_4‘
LERz

"

:“J
>4

"
-

o5
=
-y
- N
o i I
\‘:\
. P}
a
tﬂ

D7/C

B T RSOONON D Dl o i

.
~
o

WLP LU

)

'A'

LLEWN

« 0 7 &

an
&

s

-

